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Preface

This book grew outofa conference sponsored by the Educational
Testing Service and e University of Wisconsin’s National Center for
Research in Mathematical Sciences Education. The conference was held in
Princeton, New Jersey, and its purpose was to facilitate the work of a group
of scholars who are especially interested in the assessment of higher-order
understandings and processes in foundation-level (pre-high school) math-
ematics. The conference brought togetheran international team of scholars
representing diverse perspectives: mathematicians, mathematics educators,
developmental psychologists, technology specialists, psychometricians, and
curriculum developers.

Discussions at the conference focused on issues such as the
purpuses of assessment, guidelines for producing and scoring “real-life”
assessmentactivities, and themeanings of such terms as “deeperand higher-
order understanding,” “cognitive objectives,” and “authentic mathematical
activities.” International trends were highlighted, as well as current prob-
lems, challenges, and opportunities within the United States.

Assessment was viewed as a critical component of complex, dy-
namic, and continually adapting educational systems. For example, during
the time that chapters in this book were being written, sweeping changes in
mathematics education were being initiated in response to powerful recent
advances in technology, cognitive psychology,and mathematics, as well as to
numerous public demands for educational reform. These changes have
already resulted in significant reappraisals of what it means to understand
mathematics, of the nature of mathematics teaching and learning, and of
the real- life situations in which mathematics is useful. The challenge is to
pursue assessment-related initiatives that are systemically valid, in the sense
that they work to complement and enhance other improvements in the
educational system rather than acting as an impediment to badly needed
curriculum reforms.

To address these issues, most chapters in this book focus on
clarifying and articulating the goals of assessment and instruction, and they




stress the content of assessment above its mode of delivery. For example,
computer- or portfolio-based assessments are interpreted as means to ends,
not as ends in themselves, and assessment is conceived as an ongoing
documentation process, seamless with instruction, whose quality hinges
upon its ability to provide complete and appropriate information as needed
to inform priorities in instructional decision making.

This book is intended for researchers and curriculum developers
in mathematics education, for teachers of mathematics, for those involved
in the mathematical and pedagogical preparation cf mathematics teachers,
and for graduate students in mathematics education. It tackles some of the
most complicated issues related to assessment, and it offers fresh perspec-
tives from leaders in the ficld—with the hope that the ultimate consumer in
the instruction /assessment enterprise, the individual student, will reclaim
his and her potential for self-directed mathematics learning.

We are grateful to the authors of these chapters, who contributed
their expertise and energy to this project, and to Gail Guadagnino at
Educational Testing Service for typing and preparing the manuscripts.

Richard Lesh
Susan J. Lamon

April 1992

Note: The work described in chapters 2, 3, 4, 10, 11, 12, 18, 14, 15, and 16 was
supported in part by the National Science Foundation. Any opinions, findings,
and conclusions expressed are those of the authors and do not necessarily reflect
the views of the National Science Foundation.
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Trends, Goals,
and Priorities
in Mathematics
Assessment

Richard Lesh and
Susan J. Lamon

INTRODUCTION

Today, there are strong pressures to move away
from traditional multiple-choice or short-answer tests, toward alternative
forms of assessment that focus on “real-life” situations, “authentic® math-
ematics, and “performance” activities. However, in spite of the fact that
organizations suchas the National Council of Teachers of Mathematics have
made significant progress in reaching a national consensus on curriculum
and evaluation standards for school mathematics (NCTM, 1989), what we
want to move away from is clearer than what we want to move toward in
assessment reform. For example, in the first sentence of this paragraph,
each of the words in quotation marks tends to be a subject of debate among
mathematics educators.

Whatis meantby real-life situations? or authentic mathematics? or
performance activities? The main purpose of this book is to address these
kinds of questions in a form that is relevant to priority decision—m%ng
issues that arise during the construction of new modes of assessfhent.
Authorsin this book were chosen partly because of the leadership roles they
have played in reform efforts aimed at high-stakes testing programs in the
United States, Great Britain, and the Netherlands. But they were also
selected because of their interests and experience in developing materials
that contribute to both instruction and assessment in the classroom.

m
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Trends, Goals, and Priorities in Mathematics Assessment

This chapter is divided into three sections. The first section
describes the main types of assessment emphasized throughout this book, -
and several distinctions are described that have influenced mathematics
educators’ views about the purposes of assessment. For example, some
especially relevant distinctions are reflected in similarities and differences
among the words examine, documeni, assess, evaluate, test, and measure. The
second section emphasizes several ways that current assessment interests
developed out of earlier curriculum reform efforts. For example, in past
attempts at curriculum reform, it became clear that piecemeal approaches
seldom succeeded, especiallyif the neglected areas involved assessmentand
teacher education. Such lessons are especially relevant, because it seems
unlikely that piecemeal approaches to assessment reform wiil work any
better than they did for curriculum reform in general. Even when attention
is focused on assessment, teacher education, program implementation, and
the improvement of curriculum materialsand instruction muststill be taken
into account. The third section gives an overview of the remainder of the
book—new views about the objectives of instruction and assessment, new
types of items and assessment procedures, new perspectives about class-
room-based assessment, new types of reports and response interpretation
schemes, and future directions for research and development related to
assessment.

SOME DISTINCTIONS THAT INFLUENCE VIEWS ABOUT ASSESSMENT

The aim of educational assessment is to produce information to
assist in educational decision making, where the decision makers include
administrators, policy makers, the public, parents, teachers, and students
themselves. None of these consumers of assessment information can be
ignored. But even though the high-stakes, acceptorreject decisions of
administrators and other policy makers are important, the authors in this
book generally consider the needs of students, parents, and teachers as
priorities, because their main goals are to facilitate learning.

In an age of information, educational assessment systems must be
able to gather information from a variety of sources, not just tests, and they
must provide information about individual students, groups of students,
teachers of students, and programs for students. Also, the information itself
must often include multidimensional profiles of a variety of achievements
and abilities, and descriptions of relevant conditions underwhich individual
profiles were developed. Furthermore, the information must be displayed
in a form that is simple without being simplistic, and that also meets the
needs of a variety of decision makers and decision-making purposes.




Lesh and Lamon

No single source of information can be expected to serve all
purposes, and nosingle characterization of students (orgroups, or teachers,
or programs) is appropriate for all decision makers and decision-making
issues. For example, in the assessment of individual students, when the goal
is to document developing knowledge and abilities, some of the most useful
sources of information involve problem-solving activities in which students
simultaneously learn and document what they are learning. But when
activities contribute to both learning and assessment, traditional concep-
tions of reliability must be revised or extended, because performance does
not remain invariant across a string of equivalent tasks and the difficulty of
a given task depends on whether it occurs early or late in the sequence.

Similarly, when attention shifts from multiple<choice or short-
answer tests to project-sized activities (such as those that are emphasized in
portfolio forms of assessment), the notion of validity generally needs to be
expanded to include at least the following issues:

® Construct validity: Are the constructs that are being measured
(or described) aligned with national curriculum standards? Do
the understandings and abilities that are emphasized reflect a
representative sample of those that contribute to success in a
technology-based age of information?

Decision validity: Is the information collected, analyzed, orga-
nized, aggregated, and displayed in a form appropriate to the
entities that are being assessed? Are the results appropriate for
the decision-making issues that are priorities to address?

Systemic validity: Does the assessment program as a whole help
to induce curricular and instructional changes that foster the
development of the constructs that are being monitored?

Predictive validity: Are results of the assessment correlated with
performance in other relevant areas (such as success on tests in
beginning college courses)?

When attention focuses on instructional decision making by
teachers (and others who are familiar with students) rather than on policy
decisions byadministrators (and others who are not familiar with students),
the risks and benefits associated with assessment results tend to change. For
example, rapid turn-around times sometimes become more importantthan
high precision or high accuracy or high reliability, and rich and meaningful
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reports often become more important than those that simply use “g”
(general aptitude) as a2 euphemism for not knowing what is being tested.

In a technology-based society, assessment opportunities are influ-
enced by the fact that reports can achieve simplicity without reducing all
information to a single number. Simplicity can often be achieved by using
reports that are computer-based, graphics-based, interactive, and inquiry
oriented, and that focus on specific questions from specific people in
specific situations.

For the alternative approaches to assessment that are emphasized
in this bouk, it is important to underscore the fact that the authors are not
simply concerned about developing new modes of assessment. They are
primarily concerned about changing the substance of what is being mea-
sured. Thatis, they are not simply concerned about making minor changes
to testing strategies (such as discontinuing the use of multiple-choice items,
or focusing on computer-adaptive sequences of questions rather than fixed
pencil-and-paper formats). They are concerned about the fact that, when
most large-scale, high-stakes standardized tests are evaluated in terms of
their alignment with the nationally endorsed Curiculum and Evaluation
Standards for School Mathematics (NCTM, 1989), the understandirgs and
abilities that are assessed tend to represent only narrow, obsolete, and
untypical conceptions about (i) the nature of mathematics, (ii) the nature
of real-life situations in which mathematics is useful in our modern world,
and (iii) the nature of the knowledge and abilities that contnbute to success
in the preceding kinds of situations.

In one way or another, nearly every author in this book focuses on
fundamental issues that involve clarifying the nature of children’s math-
ematical knowledge; they also focus on developing operational definitions
of what it means to “understand” the foundations of elementary mathemat-
icswhen special attention isgiven to “deeper and higher-order conceptions”
of foundation-level concepts, procedures, and principles. The authors in
this book are mainly interested in (i) examining students’ abilities, (ii)
documenting their achievements, and (iii) assessing their progress. They are
not especially interested in lesting, measuring, anc evaluating. Although
thesewordsare often used interchangeably, their meaningsare notidentical.

Examining, Decumenting, Assessing, Testing, Measuring, Evaluating

Unlese certain distinctions are sorted out with respect to the
preceding words, they are likely to cause confusion when readers try to
interpret the chapters in this book. Therefore, it is useful to consider the

16




following contrasting definitions.
a Examining: To examine something means inspecting it closely.

a Documenting: To document something means gathering tangible
evidence to demonstrate what occurred.

m Assessing: To assess something means describing its current
state—probably with reference to some conceptual, or proce-
dural, or developmental landmarks.

Testing: To test something means creating an ordeal (or a
barrier, or a filter) to inform decisions about acceptance or

rejection, passing or failing.

Mcasun'né’: To measure something means specifying both “how
much” and “of what” (using some weli-specified unit).

® Evaluating: To evaluate something means assigning a value to it.

The point of emphasizing the preceding distinctions is that it is
possible to examine students, and to monitor their progress, without relying

on a test (or other nonproductive ordeals). Also, it is possible to document
students’ achievements and abilities without measuring them in terms of
some hypothesized abstract quantity and without reducing relevant infor-
mation to a single-number score (or letter grade). Furthermore, it is
possible to assess where students are and where theyneed to go (with respect
to well- known landmarks of mathematical understandings and abilities)
without assigning values to their current states and without comparing
students with one another along a simplistic “good-bad” scale. In fact,
individuals who are “good” in mathematics ofien have exceedingly different profiles
of strengths and weaknesses; learning progress can occur along a variety of paths and
dimensions; accurate interpretations of achievements and abilities usually depend on
the conditions under which development occurred.

In current assessment reform efforts, the goal is not simply to
produce new kinds of tests. The authorsin this book generally have in mind
a two-pronged approach to assessment reform: first, to increase the authen-
ticity of tests, where authenticity is measured in terms of alignment with
standards such as those published by the National Council of Teachers of
Mathematics; and second, and equally important, toincrease the credibility
and fairness of assessment-relevant information taken from other sources,
such as students’ extended projects, or teachers’ classroom observations.
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LESSONS FROM PIECEMEAL APPROACKES TO CURRICULUM REFORM

Leaders in mathematics education have come to realize that
piecemeal approaches to curriculum reform seldom succeed. The Math-
ematical Sciences Education Board writes:

Few traces remain of the expensive, major curriculum development
projects so prominent in the 1960s and 1970s. These freestanding
curricula, which were intended to be adopted intact by schools, were
naive about the process of change. Teachers were not directly
invoived in the development, and acceptance of new curricula was
viewed as a top-down imposition. [Also] commonly employed methods of
evaluation were themselves obstacles to the teaching of beyond-minimum
competencies. (MSEB, 1990, p. 12; emphasis added)

Similarly, in the National Council of Teachers of Mathematics’ recent series,
Setting a Rescarch Agenda for Mathematics Education (1989), Romberg

describes another reason why many past curriculum reform efforts seldom
achieved lasting success:

In spite of the best intentions of developers and implementors, it
was unreasonable to expect that new products or programs would be
used as intended in most schools and classrooms. The reason for this
is that public schools as they now operate are integrated social
systems. Tinkering with parts, such as changing textbooks or the
number of required courses, fails to change other components of
the system. The traditions of the system force new products to be
used in old ways. Current educational practice is based on a coher-
ent set of ideas about goals, knowledge, work, and technology that
came from a set of “scientific management” principles growing out
of the industrial revolution of the past century. These ideas about
schooling need to be challenged and replaced with an equally
coherent set of practices in light of the economic and social revolu-
tion in which we are now engaged. Current school mathematics operates
within a coherent system; veform will happen only if an equally coherent
system replaces it. (NCTM, 1989, p. 21; emphasis added)

High-stakes tests are widely regarded as powerful leverage points
to influence curriculum reform, because such tests tend to be aimed
precisely at the infrastructure of schooling. First, tests are used to inform
critical policy decisions that mold and shape the education system, and
second, tesis are used to define, clarify, and monitor goals of the system that
is created. Therefore, for better or for worse, itis clear that high-stakes tests




strongly influence both what is taught and how it is taught in mathematics
education (Romberg, Zatinnia, and Williams, 1989). Such tests are not
simply neutral indicators of learning outcomes. When rewards, punish-
ments, and opportunities are atstake, they tend to become powerful compo-
nents of instruction itself. Consequently, relevant professional ar.d govern-
mental organizations are increasingly making demands, such as “Discon-
tinue use of standardized tests that are misaligned with national standards for
curriculum” (Mathematical Sciences Education Board, 1990, p. 21).

Even though mathermatics educators have come to realize that
piecemeal approaches to curriculum reform are not sufficient, it is not
widely recognized that piecemeal approaches to assessment will be equally
unlikely to succeed. Recent policy statements from relevant professional
and governmental organizations have made significant progress toward
clarifying the nature of the most important goals of instruction, and
innovative testing programs have produced a number of examples of test
items and tests. However, a number of important issues that extend beyond
the level of individual problems and isolated objectives need to be ad-
dressed. Consider the following:

s Adopting new statements of objectives may do little good if
these objectives continue to be expressed as simple unorga-
nized and unweighted lists of rules that convert to test items
focusing on either (i) complex strings of low-level facts and
skills which continue to be treated as though they should be
mastered one at a time and in isolation, or (ii) global heuristics,
strategies, or processes which are treated as though they
function independently from any substantive mathematical
ideas.

Not using multiple-choice iters may do little good if we con-
tinue to use problems and scoring procedures that impose
artificial constraints by allowing only a single type and leve! of
correct answer, because such constraints tend to trivialize the
interpretation and modelrefinement phases of problems where
deeper and higher-order mathematical understandings tend to
be emphasized.

Gathering assessment information from new types of situations
(such as students’ project portfolios, or teachers’ classroom
observations) may do little good if the conceptually rich and
instructionally relevant information that is gathered continues
to be either collapsed onto a single number line, or left in an
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unsimplified or uninterpreted form that fails to address the
needs of many important types of educational decision makers.

For assessment, just as for instruction, special attention should be
focused on components of the system that directly improve the infrastruc-
ture of our education system. This goal can only be accomplished by dealing
directly with the knowledge and beliefs of teachers, students, parents,
administrators, and pclicy makers, especially their understandingsabout (i)
the nature of mathematics, (ii) the nature of realife learning and problem-
solving situations, and (iii) the nature of abilities that contribute to success
when new types of mathematical ideas and tools are used in new kinds of
problem-solving situations.

To address such issues, it is useful to shift attention beyond
traditional “bottom-up” approaches to assessment that begin by developing
new types of objectives and then proceed to introduce new types of test
items, tests, and reporis. Sometimes it is useful to adopt a “top-down”
approach that emphasizes the following questions: (i) What decision-
making issues are priorities for educators to address? (ii) What kinds of
reports are needed to inform these decisions? (iii) What types of informa-
tion and data sources- -testing formats, item types, scoring procedures,
aggregation techniques- -are appropriate for such reports?

If the bottom-up and top-down approaches are coordinated, then
issues that need to be addressed include the following:

w New levels and types of instructional objectives need to be empha-
sized, including deeper and higher-order understandings of
cognitive objectives that are not simply complex sequences of
behavioral objectives and that are also not simply global process
objectives or affective objectives.

8 New levels and types of problem-solving activities must be empha-
sized, ranging from clearly defined pure mathematics problems
to more complex and open-ended real-life projects in which
realistic time, tools, and resources are available.

New sources of documentation for achievement must be consid-
ered, including not only innovative new types of tests, but also
students’ project portfolios, teachers’ classroom observations,
one-to-one clinical interviews, and computer-based instructional
activities.

20
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8 New types of response interpretation procedures must be developed,
including those that go beyond assigning one-dimensional
scores or letter grades to identify profiles of strengths and
needs for individual students.

8 New data analysis mo '#ls and procedures must be developed based
on assumptions that re consistent with (or at least not flagrantly
inconsistent with) accepted views about the nature of mathemat
ics, learning, and problem solving in real life situations.

8 New types of learning progress reports must be generated that are
simple and yet not simplistic, and that: (i) integrate informa-
tion from a variety of sources, (ii) focus on patterns and trends
in data, and (iii) inform a variety of decision makers and
decision-making issues.

® New decision makers and new decision-making issues must be treated
as priorities, where the decision makers include students, teachers,
parents, and administrators, and the issues range from program
accountability to diagnostic analyses of learning progress for
individual students, with emphasis on equity and validity.

AN OVERVIEW OF THE BOCK

This book is divided into five parts. The first part describes some
critical conceptual foundations for a newview of assessmentin mathematics
education. The second partfocuses on innovative new items and assessment
procedures. The third part describes several emerging new perspectives
about classroom-based assessment. The fourth part focuses on examples of
some new kinds of reports and response interpretation schemes that will be
needed to support these broader views of assessment. Finally, the fifth part
shifts attention toward some important future directions for assessment-
related research and development and toward some practical matters that
can subvert even assessment programs that are based on strong and sound
conceptual foundations.

Foundations for a New View of Maihematics Assessment

Opening chapters of this book focus on recent developments in
cognitive science, where a great deal of attention has been given to investi-
gations dealing with the nature and development of students’ mathematical
knowledge and abilities. A prominenttheme is thata clear de finition of what
is being assessed should guide the assessment process.

NS
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In chapter 2, Lesh and Lamon describe useful ways to think about
the nature of authentic mathematical activities. In particular, they focus on
responses to the following kinds of questions: What are examples of impor-
tant cognitive objectives in mathematics instruction? How are cognitive
objectives different from (yet related to) behavioral objectives, process
objectives, or affective objectives which have been emphasized in the past?
What does it mean to develop deeper or higher-order understandings of
elementary cognitive objectives in mathematics? How can instruction and
assessment be designed to elicit information regarding students’ higher-
order understandings?

In chapter 3, Goldin extends his earlier research on task variables
and proposes a more comprehensive assessment framework built upon not
only task analyses but also idea analyses and response analyses. He also deals
with questions of the following type: How can the cognitive processes
themselves become the objects of assessment? How are these process objec-
tives linked to content understanding and to the growth of more sophisti-
cated conceptualizations of mathematical ideas?

In chapter 4, Chazan and Yerushalmy focus on the domain of
geometry and provide examples in which cognitive processes, such as
verifying, conjecturing, and generalizing, are the objects of assessment.
They also describe ways to assess higher-order inquiry skills which are some
of the main instructional goals of innovative, computer-based instruction
with computer-based tools such as The Geometric Supposer.

Innsvative New Types of Items znd Assessment Processes

The second part of this book highlights recent British and Dutch
experiences in innovative, large-scale assessment. The juxtaposition of a
specific-to-general approach and a general-tospecific approach to assess-
ment reform also provides a tacit comparison of two research and develop-
ment paradigms.

In chapters 5 and 6, Bell, Burkhardt, and Swan describe numerous
examples of assessment tasks and marking schemez that have been used by
examination boards in the United Kingdom, and in chapter 7, they also
reflect on assessmentrelated issues that need to be addressed to effect
curriculum change. In particular, they describe problems encountered in
their assessment reform efforts and solutions that have proven to be
effective in dealing with such problems.

In chapters 8 and 9, de Lange and Streefland give details and




examples to illustrate the types of mathernatics assessments that have been
emphasized in the Netherlands, where the development of well-articulated
assessment goals and procedures have been closely linked to instructional-
based research and curriculum development. De Lange discusses several
creative formats for assessing high-level goals, including free productions,
two-stage tasks, and test-tests (tests that consist of designing tests). Streefland
explains the nature of realistic instruction designed to facilitate thinking
strategies and progressive mathematization.

Kew Perspectives Absut Classreem-based Assessment

In contrast to preceding chapters on macroplans for assessment
reform, the chapters in Part Il focus on assessmentrelevant information
that is based on classroom observations in American schools and on one-to-
one teacher/student interviews. A common theme in this section is that an
accurate profile of a student’s mathematical understandings depends on
the use of multiple techniques that are explicitly designed to overcome the
limitations of any one method of capturing students’ knowledge and
thought processes.

In chapter 10, Maher, Davis, and Alston examine assessmentona
microscopic level. That is, one teacher, on the basis of a brief classroom
observation, makes judgments about the correctness of children’s thinking.

In chapter 11, Ginsburg, Lopez, Mukhopadhyay, Yamamoto, Willis,
and Kelly describe how combinations of screening instruments, probes,
modified clinicalinterview techniques, and classroom observations can help
teachers assess students’ thinking in whole-class situations. They address
questions such as, How can standard tests be improved to reflect a broader
conception of what it means to think mathematically? How can information
from multiple sources be integrated to give a more complete description of
diverse aspects of understanding?

New Types of Reports and Respoase Interpretation Schemes

The fourth partofthe book focuses on theinterpretation, analysis,
and reporting of assessment information based on new types of statistical
models built on assumptions derived from modern cognitive psychology.

" In chapter 12, Mislevy, Yamamoto, and Anacker discuss several
recent advances in measurement and statistics that have been made by
researchers who are aiming to connect quantitative models to qualitative
differences in student thinking. Questions addressed include the following:
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What kind of statistical models seem particularly promising to describe
- children's mathematical thinking? How can measurement procedures cap-
ture distinctions between critical states of understanding?

In chapter 13, Lesh and Lamon use the theoretical perspectives
described in earlier chapters to focus on specific problems about ratio and
proportion. Questions that are addressed include the following: What are
some of common misconceptions about the formulation of “good” prob-
lems and “good” responses? What are some specific cognitive objectives of
instruction about ratios and proportions? How can reliable scores be
produced for problems with multiple solution paths which have different
levels of difficulty?

In chapter 14, Lesh, Lamon, Gong, and Post describe one way to
represent complex profiles of student abilities and achievement. They use
computer-generated “learning progress maps” which succeed in being
simple (from the point of view of educational decision makers) because they
are graphics-based, interactive, and inquiry oriented, with details that are
displayed only when they are requested by individual decision makers. That
is, the reports are versatile enough to aggregate and display information in
alternative ways to address a variety of decision-making issues.

Future Directions and Practical Conceras

In chapter 15, Lesh, Lamon, Lester, and Behr describe some of the
most important assumptions underlying traditional types of standardized
testing compared with the types of alternative assessments emphasized in
this book. Chapter 15 also describes several priorities for future research
(withspecial attention being given to issues related to equity, technology, and
teacher education), and it concludes with specific examples taken from three
current closely related projects that were explicitly designed to find practical
ways to implement recommendations made in other chapters of this book.

In chapter 16, Schwartz summarizes conclusions reached by a
series of recent projects focusing on “The Prices of Secrecy: The Social,
Intellectual, and Psychological Costs of Current Assessment Practice”
(Schwartz and Viator, 1990). //

7

SUMMARY

It is our hope that this book will provide both general principles
and specific examples to help support curriculum reform efforts that
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go beyond testing (for screening) to assessment (for informed
decision making);

go beyond a few discrete assessment events to the seamless
integration of instruction and assessment;

go beyond behavioral objectives to cognitive objectives;
go beyond multiple choice tests to realistic tasks;
go beyond right answers to reasoned answers;

go beyond one-number scores to multi-dimensional profiles;
and

go beyond report cards to learning progress maps.
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Assessing
Authentic
Mathematical
Performance

Richard Lesh and
Susan J. Lamon

This chapter addresses the following four ques-
tions: What are authentic mathematical activities? What kind of instruc-
tional objectives are priorities to address? What kind of problems are
particulariy uscfu! for examining these priorities? What are some rules of

thumb for creating such problems? To explain our answers to these ques-
tions, it is necessary to focus on the concept of models—in mathematics, in
cognitive psychology, and in everyday situations.

CHARACTERISTICS OF AUTHENTIC MATHEMATICAL ACTIVITIES

Authentic mathematical activities are actual work samples taken
from a representative collection of activities that are meaningful and
important in their own right. They are not just surrogates for mathematical
activities that are important in “real-life” situations.

To verify the mathematical authenticity of a collection of activities
(beyond simply evaluating theauthenticity ofisolated items), both positively
and negatively oriented criteria are relevant. Thatis, the activitiesas awhole
should require students to use a representative sample of the knowledge and
abilities that reflect targeted levels of competence in the field, and at the
same time, the activities should avoid narrow, biased, obsolete, or
instructionally counter-productive conceptions about the nature of mathe-
matics, the nature of realistic problem-solving situations in which mathe-
matics is useful, and the varieties of mathematical capabilities that are




Assensing Authentic Mathematical Performance

productive «n these situations. Stated simply, authentic mathematical activi-
tiesare those that involve: (i) real mathematics, (ii) realistic situations, (iii)
questions or issues that might actually occur in a real-life situation, and (iv)
realistic tools and resources. The most important kinds of problem-solving
activities that we have in mind have the following characteristics:

s The problem solutions tend to require atleast 5 to 50 minutes
to construct.

The contexts might reasonably occur in the students’ everyday
lives.

The issues fit the interests and experiences of targeted students.

The tasks encourage students to engage their personal
knowledge, experience, and sense-making abilities.

The objectives emphasize deeper and higher-order under-
standings and processes in elementary mathematics.

The solution procedures allow students to use realistic tools and
resources (such as hand-held calculators, pocket computers,
notebook computers, consultants, colleagues, or “how-to”
manuals).

The activities generally require more than simply answering a
specific question. They involve developing a mathematical
model that can be used to describe, explain, manipulate, or
predict the behavior of a variety of systems that occur in every-
dav situations.

The activities contribute to both learning and assessment.

The evaluation procedures recognize and reward more than a
single type and level of correct response.

CHARACTERISTICS OF PRIORITY INS , RUCTIONAL OBJECTIVES

Asnoted in chapter 1, the revolution in mathematics education of
the past decade resulted from powerful advances in technology, cognitive
psychology, mathematics, and mathematics education, together with dra-
matic changes in demands for 2 competitive work force. Behavioral psychol-
ogy (based on factual and procedural rules) has given way to cognitive




psychology (based on models for making sense of real-life experiences), and
technology-based tools have radically expanded the kinds of situations in
which mathematics is useful, while simultaneously increasing the kinds of
mathematics that are useful and the kinds of people who use mathematics
on a daily basis.

In response to these trends, professional and governmental orga-
nizations have reached an unprecedented, theoretically sound, and future-
oriented new consensus about the foundations of mathematics in an age of
information (see, for example, National Council of Teachers of Mathemat-
ics [NCTM], 1989). To address the new goals of mathematics instruction,
alternative assessment programs are being demanded, created, and refined
from California to Connecticut, from Chicago to Houston, and from
Australia to the Netherlands.

A hallmark of most new programs is a focus on “authentic
performance” rather than on simply measuring some undefined factor. In
general, new programs emphasize thatit is not sufficient merely to replace
multiple-choice items with fill-in-the-blank counterparts. Realistic applied
problems are not created by just starting with an abstract algebraic (or
arithmetic, or geometric) sentence and replacing the abstract symbols with
the names of real objects. Unfortunately, clarity about goals for instruction
does not necessarily result in equally clear operational definitions (that is,
procedures and criteria) for measuring the extent to which the goals are
being met. In spite of the enormous progress that has been made in
specifying curriculum and evaluation standards for school mathematics
(NCTM, 1989), what is not desirable continues to be far clearer than what
is. In debates among leaders in current mathematics education reform
movements, a great many issues remain to be resolved about the nature of
“real” mathematics, realistic problems, realistic solutions, and realistic
solution processes, as well as whatit means to have a deeper or higher-order
understanding of an elementary mathematical idea. For example:

s According to recent reports from professional and governmen-
tal organizations, harsh criticism has been aimed at the kinds of
content-by-process matrices that have been used in traditional
forms of assessment and instruction. But what is missing from
such matrices? And how can alternative objectives frameworks
avoid these deficiencies?

In mathematics education today, it is fashionable to be a
“constructivist.” But what is it that students are expected to
“construct™? Similarly, twenty years ago, mathematics laborato-




Assensing Authentic Mathematical Performance

ries focused on concrete “embodiments” to help students
understand foundation-level mathematical concepts and
principles. But what was it that the concrete materials were
supposed to embody? When “discovery learning” was empha-
sized, what was it that students were supposed to discover?
Surely the answer in each case must include something more
than simply facts and procedural rules.

As a reaction to instruction and assessment that focuses on
decontextualized abstractions, cognitive scientists often empha-
size the importance of situated knowledge (Greeno, 1988, 1988b,
1987). But what is an example of a situated understanding that is
not simply a specific fact or rule that fails to generalize to other
situations?

In the past, college mathematics courses for preservice elemen-
tary teachers have often been characterized by superficial
treatments of advanced (college level) topics rather than
deeper or higher-order treatments of elementary (K-8) topics.
But what does it mean to have a deeper or higher-order under-
standing of an elementary mathematical idea?

When students are encouraged to use technology-based tools in
instruction and testing, these tools tend to be “capability amplifi-
ers” which are both conceptual and procedural in nature. For
example, in realistic problem-solving situations, when students
use tools such as pocket calculators (with graphing and symbol-
manipulation capabilities) or notebook computers (with word
processors and spreadsheets and other modeling or simulation
tools), the tools often introduce new ways to think about givens,
goals, and possible solution paths—in addition to providing new
ways to get from givens to goals. They are much more than new
ways to achieve old goals using old mathematical ideas. Further-
more, the psychological characteristics of a student-without-tools
may be quite different from those of a student-with-tools.
Mathematics educators have only recently begun to do extensive
research on reallife problem solving involving these new breeds
of students with amplified abilities. What ideas and processes
should be emphasized, in teaching and testing, when students
have access to powerful technology-based tools?

The pendulum of curriculum reform tends to swing back and
forth between basic skills and general problem-solving pro-
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cesses. While each extreme has some merit, both also have
some serious shortcomings. For example, the atomization and
fragmentation that tend to accompany an emphasis on discrete
basic skills tend to undermine long-term learning. On the other
hand, when attention focuses mainly on content-independent
problem-solving processes, questions like, “Where is the math-
ematics?” often arise.

To avoid such pendulum swings, it is important for teaching and
testing to emphasize cognitive objectives (Greeno, 1976, 1980,
1988) that are not simply behavioral objectives (factual or proce-
dural rules) and-that are not simply reducible to general process
objectives (content-independent rules). But how can cognitive
objectives be stated in a form that is both clear and precise from
the point of view of assessment, and instructionally sound and
meaningful from the point of view of teachers and students?

According to the theoretical approach that will be emphasized in
this chapter, all of the preceding questions are variations on a single theme,
and a single idea is the key to answering all of them. For example, consider
the question, “What characterizes a cognitive objective that distinguishes it
from a behavioral objective or a global process objective?” Our answer is a
model (that is, a complete functioning system for describing, explaining,
constructing, modifying, manipulating, and predicting our increasingly
complex world of experiences). In other words, to answer the questions that
were stated at the beginning of this chapter, a primary goal will be to clarify
whatit means to base the most important cognitive objectives of mathemat-
ics instruction on the construction of mathematical models.

THE NATURE OF COGMITIVE MODELS

A principle that is a cornerstone of modern cognitive science is
illustrated in Figure 1—that is, humans interpret experiences by mapping
them to internal models. For example, what a person “sees” or “hears” in a
given situation is filtered, organized, and interpreted by the cognitive
models thathe or she has constructed, based on pastexperience. Therefore,
two people often interpret a single situation in quite different ways. If a
person has only developed primitive models that fit a given situation, then
the way this person thinks about the situation will tend to be relatively barren
and distorted. In such cases, as suggested in Figure 1, the information that
is available may not be noticed, and patterns that are not appropriate are
likely to be perceived even though they are not objectively given.

oy
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Figure 1. Humans lierpret
Experiences By Mapping to
internal Models

In language-
oriented areas of artifi-
cial intelligence re-
search, frames of refer-
ence are often referred
to as scripts, or frames,
or as other types of rep-
resentational systems,
such as Schank’s stories
(1991). In mathematics,
there has been a long
history of using a variety
of representation sys-
tems to describe, ex-

plain, or predict experiences in real or possible worlds. These representa-
tional systemsare usually referred to simply as medels, because theyare used
to model structurally rich phenomena. No matter which of the preceding
terms is used, the point is that humans generate interpretations that are
influenced by both external data and internal models, and in many prob-
lem-solving/decision-making situations, the information that is relevant is
based on hypothesized patterns and regularities beneath the surface, not
just on calculations or deductions based on isolated pieces of data.

THE IMPORTANCE OF MODELS IN AN AGE OF INFORMATION

The principle that is illustrated in the figure above has alzo been
described in a number of recent popular publications. For example, the best-
selling book, Megatrends 2000, describes the principle in the following way:

We are drowning in information and starving for knowledge....
Without a structure, a frame of reference, the vast amount of data
that comes your way each day will probably whiz right by you.
{Naisbitt and Aburdene, 1990, p. 13).

In many real-life problem-solving and decision-making situations, -
an overwhelming amount of information is relevant, but this information
often needs to be filtered, weighted, simplified, organized, or interpreted
before itis useful. Sometimes needed information may not be provided, yet
a decision may need to be made anyway, and made within specified time




limits, budget constraints, risks, and margins for error. Models are needed
to provide meaningful patterns that can be used (i) to make rapid decisions
based on strategically selected cues, (ii) to fill holes or go beyond a minimum
setofinformation, (iii) to provide explanations of howfacts are related toone
another, or (iv) to provide hypotheses about missing (or hidden or dis-
guised) objects or events that may need to be actively sought out, generated,
or (re)interpreted.

The essence of an age of information is that the models humans
develop to think about the world also mold and shape thatworld. This iswhy,
in professions ranging from business to engineering to law to music, many of
the patterns and regularities that exist in the world are not simply preor-
dained laws of nature, they are model-based products of human construc-
tions. In fact, as the year 2000 approaches, many of the most important
systems that humans must learn to understand (that is, construct, analyze,
explain, manipulate, predict, and control) are businesses, communication
networks, social systems, and other systems thatare based on models thatare
themselves constructed by humans. Furthermore, many of the mostimpor-
tant characteristics of these systems are based on patterns and regularities
beneath the surface, not just on surface-level perceptions.

Increasingly, problem solving and decision making require model
construction, model refinement, and model adaptation. In fields ranging

from business to engineering, and from the arts to the sciences, many of the
most important goals of education involve the construction of models that
provide conceptual and procedural amplifiers for interacting with our
increasingly complex worlds of experience.

FACILITATING THE CONSTRUCTION OF POWERFUL MODELS

Many professional schools, such as our nation’s leading business
and engineering schools, furnish a weaith of examples of teaching models
for thinking about the world. The value of such modelsis easy to recognize
if we imagine a well-educated modern business manager or engineer sent
back in time. Modern professionals would often appear to be unusually
intelligent compared with their counterparts in earlier centuries. Their
enhanced capabilities would not be the result of higher general intelli-
gence. Instead, their enhanced capabilities would result from their use of

the powerful, elementary-but-deep models and tools that our culture en-
ables students to construct.

In fields where the mostimportant goals of instruction are associ-
ated with the constructicn of models for making (and making sense of)
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complex systems, case studies are often used to help students construct
models that have proven to possess the greatest power and utility. In business
schools, for example, students often use spreadsheets or similar tools to
construct models to explain wrends or patterns in systems which can then be
used as prototypes for making sense of other structurally related situations.

Models develop from concrete to abstract, from intuitions to
formal systems, and from situated knowledge to decontextualized under-
standings. To encourage their development, the situations that are used
resemble the concrete embodiments which are familiar to mathematics
educators from their experiences in mathematics laboratory forms of
instruction (Dienes, 1957; Lesh, Post, and Behr, 1987).

THE NATURE OF “REAL” MATHEMATICS

In aseries of recentreports from the National Council of Teachers
of Mathematics (1989), the Mathematics Association of America (Steen,
1988), the American Association for the Advancement of Science (1989),
and the Mathematical Sciences Education Board (1990, 1990a), the mathe-
matics education community has reached a new consensus about the nature
of real mathematics (Ernest, 1991). The key characteristics that distinguish
inathematics from other domains of knowledge can be summarized as
follows:

Mathermnatics is the science and language of pattern.... As biology is a
science of living orgarisms and physics is a science of matter and
energy, so mathematics is a science of patterns.... To know math-
ematics is to investigate and express relationships among patterns: to
discern patterns in complex and obscure contexts; to understand
and transform relations among patterns; to classify, encode, and
describe patterns; to read and write in the language of patterns; and
to employ knowledge of patterns for various practical purposes....
Facts, formulas, and information have value only to the extent that
they support effective mathematical activity, (Mathematical Sciences
Educaton Board, 1990, p. 5)

From this perspective, a simplified view of mathematics learning and
problem solving would involve the construction, refinement, or elaboration
of models (Figure 2), plus (i) mappings from “real-world” situations into a
“model world,” (ii) transformations within the model world, and (iii)
explanations or predictions from the model world back into the real world
situation.
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» Doing “pure” mathematics means investigating patterns for
their own sake, by constructing and transforming them in
structurally interesting ways, and by studying their structural
properties.

s Doing “applied” mathematics means using patterns as models
(or structural metaphors, or quantitative structures) to describe,
explain, predict, or control other systems—with refinements,
extensions, and adaptations being made to these models when
necessary.

Figure 2. A Simplified View of Mathematical Modeling

Intsrpretation

Prediction

Real World Model World

Of course, this description of mathematical problem solving is too
simplistic for many purposes. For example, when humans use a given
mathematical model to describe /explain/predict/ control a given learning
or problem-solving situation, their models tend to be partly internal and
partly external. Also, several unstable and pcssibly conflicting models are
often used in sequence and/or in parallel, with each model emphasizing or
deemphasizing somewhat different aspects of the situation or of the under-
lying abstract system. Furthermore, a given (abstract) model tends to be
embedded simultaneously within a variety of interacting notation systems
(for example, involving written symbols, spoken language, manipulatable
concrete models, static pictures or diagrams, or real-life systems, prototypes,
or structural metaphors) each of which again emphasizes or deemphasizes
different aspects to the modeled situation. Therefore, solutions to realistic
problems often involve (i) parallel and interactive uses of several distinct
notation systems and/or problem interpretations, (ii) partial mappings
between components of the modeled situation and corresponding compo-
nents ofthe modeland/or notation system, and (iii) constructing, adapting,
extending, integrating, differentiating, and/or refining of a series of mod-
els that gradually become more complete, accurate, and sophisticated.
However, for the purposes of this chapter, the simplified portrayal of
mathematical modeling is sufficient. The essential points are the following:
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m Many of the most important mathematical “objects” that
students are expected to study are not simply isolated factual
and procedural rules or general problem-solving processes.
They are models (or patterns, or structural metaphors) that are
useful for building and making sense of real and possible
worlds.

Mathematical models are complete functioning systems, which
consist of: (i) elements (for example, quantities, ratios of quanti-
ties, shapes, coordinates), (ii) relationships among elements
within the system, (iii) operations or {ransformations on elements
in the system, and (iv) patterns that govern the behavior of the
relations, operations, and transformations.

AN EXAMPLE OF A MATHEMATICAL MODEL IN ELEMENTARY MATHEMATICS

Cariesian coordinate systemsare examples of elementary mathemati-
cal models that provide powerful ways to describe (or think about) real or
possible worlds. That is, by imposing rectangular coordinate systems on the
world, it is possible to use equations and numbers to describe whole new
classes of situations, locations, or relationships.

An important point to notice about elementary-but-deep models
is thatit often takes the genius of someone like René Descartes to introduce
the models on which the conceptual sysiem is based. Yet today, itis relatively
easy to help average-ability middle schoolers construct these powerful
models. Furthermore, if these middle schoolers could be sent back in time
to a period prior to the birth of René Descartes, they would often appear to
be geniuses, because, in a wide variety of structurally complex situations,
they would be able to generate descriptions, expianations, and predictions

that would seem miraculo is to people in ancient civilizations.

Some other imyjortant points to notice about Cartesian coordi-
nate systems include the following:

m Cartesian coordinate systems are capability amplifiers that
function in much the same way as pocket calculators. But while
pncket calculators tend to emphasize procedural capabilities,
Cartesian coordinates tend to emphasize conceptual amplifiers.
Still, both are capability amplifiers that involve conceptual and
procedural comprnents.

m Even though Cartesian coordinate systems are often repre-
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sented using diagrams that look something like game boards
for checkers, mathematicians often work with Cartesian systems
without using such diagrams; the diagrams are only embodi-
ments in which the abstract system is embedded. The model is
the underlying abstract system itself.

» Even though Cartesian coordinate systems are linked to a
variety of rules for comparing, ordering, organizing, combin-
ing, and transforming data, their primary function is not really
data processing. Their primary function is to provide a descrip-
tion or interpretation for making sense of underlying patterns
and regularities, and for expressing them in a form that is
generative and easily manipulatable.

= Even though Cartesian coordinate systems are obvi~sly human
constructions that are not inherent parts of nature, educated
citizens in the 1990s often have difficulty remembering what
the world was like before these powerful conceptual systems
were such familiar parts of our cultural heritage. In fact, today,
many people even think it’s obvious to view the world within a
four-dimensional framework in which time is the fourth dimen-
sion. In science and mathematics, things that are “obvious”
have evolved dramatically from one era to another as a function

of the conceptual models that we use to describe and explain
our experiences.

AN EXAMPLE OF A MATHEMATICAL MODEL IN ELEMENTARY ARITHMETIC

In elementary arithmetic, there are many elementary-but-deep
models of a type similar to Cartesian coordinate systems. While the elements
in Cartesian coordinate systems are coordinates of the form (n,m), the
elements in other mathematical models may be mathematical entities
ranging from signed numbers, to ratios, to proportions, to functions, to vectors, to
shapes, to sequences. Some of the models that underlie arithmetic become so
familiar to citizens of modern societies that they seem to be part of nature.
However, the names of our number systems are strong reminders of the
historic obstacles that had to be overcome before the underlying models
associated with them gained acceptability. For example:

8 In the beginning, there were natural numbers(1,2,3,4,...}. The
invention of zero occurred much later. Negative numbers were
looked upon negatively, and fractions were considered to be
unacceptable in polite society.
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= Later in history, as fractions and negatives began to seem
sensible (or rational), they were were described as being
rational numbers, as opposed to irvational numbers (like V2 and )
that just didn’t make any sense to most people.

8 Asmore time passed, even irrational numbers were included in
the set of real numbers, even though imaginary numbers (such as i
or ¥-1) ontinued to be treated as unreal.

Eventually, complex numbers proved to be very useful to describe
important events in nature, even though they included num-
bers that had previously been called imaginary.

In the history of mathematics, it took centuries to construct the
notation systems and underlying models that citizens of twentieth century
societies take for granted. Furthermore, before these models were con-
structed, carlier civilizations were often severely limited in the kinds of
economic, social, technological, or scientific systems that they were able to
create, and they were often similarly hampered in their attempts to make
sense of many kinds of patterns and regularities that occurred in their worlds
or experience.

Figure 3 suggests that many students in our schools today have
limitations similar to those that were experienced by citizens of ancient
culturesbecause whatthey see or hearis filtered, organized, and interpreted
by the cognitive models that they have constructed, and because their
primitive models are only able to produce barren and distorted interpreta-

tions of their experiences. For
example, extensive research on
the development of students’
knowledge reveals that a large
share of the American popula-
tion is often extremely restricted
in their reasoning abilities if they
must make judgments about sys-
tems that involve more than di-
rectlyobservable countsand mea-
sures (Lesh, Behr, and Post, 1987).

Figure 3. Humans interpret Underiying
Patterns & Regularities By Mapping To
Mathematical Models
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Even for middle school teachers whose relevant computational
abilities tend to be flawless, reasoning abilities are often extremely restricted
if the emphasis shifts from systems whose elements are directly perceivable
quantities to systems whose elements involve higher-order entities such as
ratios, rates, or functions (where the elements involve relationships among
several quantities) . For example, consider the tasks shown in Figure 4, which
are typical of those for which success rates have been consistently below 50
percent for large samples of 8th graders or adults, including middle school
teachers (see, for example, Lesh, Post, and Behr 1988; Post, Behr, Lesh, and
Harel, 1991).

Figure 4

Assume that each of the squares below is colored either red or blue.
If the ration of blue to red is 3:2, what is the number of blue squares?

O 000000 a0ada
N I I O o

The shaded squares below stand for cans of orange juice concentrate,
and the white squares stand for cans of water. Select the true
statement following the picture.

Mixture A Mixture B

NEEEN AEENEENEN
o OO0

{ ] Mixture A has a stronger flavor than Mixture B.
[ ] Mixture B has a sironger flavor than Mixture A.
[ ] Mixture A has the same flavor as Mixture B.

{ 1 1unable to tell which mixture is stronger.

Many more examples could be given that emphasize conceptual
rather than procedural proficiency, and similar results could be cited based
on more realistic ethnographic ~bservations in real-life settings (see, for
example, Saxe, 1991; Lave, 1988) cr on clinical interviews involving con-
crete materials (Lamon, 1990; Lesh, Landau, and Hamilton, 1988). The
results of such studies reveal how weak the conceptual foundations are
underlying many students’ procedural facility. It is important to note that
some students who perform poorly on the conceptually oriented tasks may
be highly capable individuals. But, like intelligent citizens of early cultures,
they have simply never had the opportunity or the need to construct
mathematical models whose elements involve anything more sophisticated
than simple counts and measures.
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Unfairness on testsis easy torecognize if some students have access
to powerful electronic tools that are unavailable to other students. But
unfairness of another sort occurs when some studentsgo into tests equipped
with powerful conceptual models that other students have never encoun-
tered. The situation is further exacerbated when deficiencies with respect to
such capability amplifiers are portrayed as differences in native abilities.

DEEPER AND HIGHER-ORDER UNDERSTANDINGS OF A CONCEPTUAL MODEL

To clarify what it means to have a deeper or higher-order under-
standing of a mathematical model, it is useful to return to fields such as
business and engineering where there is a long history of treating acquisi-
tion of models as a key goal of instruction. In such fields, it is common for
the most powerful models to be accompanied by (i) technical language to
facilitate communication about basic models and the systems they describe,
(ii) specialized notation systems to expedite the construction and manipu-
lation of particularly important models and systems, (iii) diagrams or
descriptions that focus attention on holistic characteristics of the system-as-
a-whole, and (iv) formulas, computation tools, spreadsheet programs, or
other simulation and modeling tools that can be used to generate hypoth-
eses, descriptions, or predictions in typical decision-making situations.
However, it is clear that understanding the underlying models involves far
more than simply being able to remember and execute rules within the
notation systems, diagrams, rules, and tools. In fact, in realistic settings,
when the purpose is toget from specifically stated givens to clearly identified
goals, the relatively simple job of executing the relevant procedures is
regarded as a low-level clerical task; if “data crunching” is necessary,
powerful technology-based tools tend to be used. Therefore, in our nation’s
leading schools of business and engineering, expert job interviewers whose
goal is to hire individuals capable of higher-level skills, including on-the-job
problem solving and decision making, tend to focus on questions that
emphasize the following types of deeper and higher-order understandings:

m Students are asked to interpret standard and nonstandard
situations using traditional models that have the greatest power
and usefulness.

u Students are asked to construct new models, or sort out and
integrate existing models, to determine (i) which kind of
information should be gathered, (ii) how the data should be
interpreted, quantified, and analyzed, and (iii) whether trial
results are sensible and useful.
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m Students are asked to analyze or critique competing interpreta-
tions of a given situation, for example, by detecting significant
model-reality mismatches using standard models, or by evaluat-
ing risks, benefits, and underlying assumptions associated with
alternative models and suggesting appropriatesmodifications or
extensions to the model.

Students are required to perform tasks in which fact/skill-level
understandings and abilities must be embedded within flexible,
adaptable, and well-integrated systems of knowledge rather
than treating lower-level definitions, facts, and rules as rigid
and isolated pieces of dogma.

In such situations, it is usually easy to recognize that (i) every model
deemphasizes and simplifies tome aspects of reality in order to emphasize and
clarify other aspects, and (ii) every model is based on some assamptions that do
not completely fit the realitiesin the prcblem situation. Therefore, when models
are important cognitive objectives of instruction, one of the main goals of
assessment is to probe the nature of the interpreting models that individual
students have constructed to determine tiic.r accuracy, complexity, complete-
ness, flexibility, and stability when they are used to generate descriptions,
explanations, and predictions in a variety of problem-solving settings and for a
variety of purposes under differing conditions. For example, whep explanations
are generated, the quality of responses depends on the following kinds of
criteria: (i) Howmuch information wasnoticed? (ii) How'well ( and howflexibly)
was the perceived information organized? (iii) How sopiiisticated, or complex,
or rich were the relationships that were noticed? (iv) Were observations and
subjective relationships perceived that were not objectively given?

To assess the types of models that individual students have con-
structed, and to assess the stability of these mode!s in a variety of situations and
conditions, assessment must go beyond testing the amount of information that
astudentnotices in a given situation; it must also assess the nature of the patterns
ofinformation thatare noticed and identify valid and invalid assumptions that
are made about underlying regularities. Similarly, the goal of instruction is not
simply to get students to master more factual and proccdural rules, but rather
to help them construct powerful models that provide conceptual/ procedural
amplifiers in priority types of problem-solving and decision-making situations.

DEEPER AND HIGHER-ORDER UNDERSTANDINAS IN ELEMENTARY MATHEMATICS

Exploring similarities between the kind of models that occur in
elementary mathematics and the kind that are emphasized in professional
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schools (or in other disciplines) has helped to identify the following six types
of deeper and higher-order understandings:

w Students should use models to interpret veallife situations. That is,
they should go beyond school math problems (in which the givens,
goais, and available solution steps are cleavly specified) to also deal
with reallife problems in which models must be constructed to
genevate descriptions, explanations, and predictions.

®  Students should think about underlying models. Students should go
beyon thinking witha given mathematical model to also think
about ;x> model as a complete functioning system, for example,
by investigating the accuracy, precision, and goodness of fit of
the descriptions that are generated for given problem-solving
situations, and by investigating structural properties of the
model (or system as a whole).

» Students should explore similarities and differences among alternative
representation systems associated with a given model. Because most
mathematical models can be embodied within a variety of
alternative notation systems (involving spoken language,
written symbols, static graphics, manipulatable concrete materi-
als, or real-life prototype experiences), students should go
beyond executing factual and procedural rules within a given
notation system and should also investigate (i) translations
from one notation sysiein to another, and (ii) strengths and
weaknesses associated with alternative embodiments.

» Students should think about thinking. That is, they should think
ahout the processes that are needed to construct and refine an
adequate model, and plan, monitor, and assess the construction
process.

w Students should think about systems of knowledge. They shouid go
beyond learning lists of isolated facts and rules to also develop
well organized and clearly differentiated systems of knowledge.
In particular, they should go beyond constructing isolated
models to also develop coherent systems of models, for ex-
ample, by investigating similarities and differences among
alternative models in a variety of problem-solving situations.

w Students should think about the nature of mathematics and assess their
oun personal capabilities. Beyond constructing and investigating
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mathematical models, students should also form accurate and
productive beliefs about (i) the nature of mathematical inodels
(for example, concerning their power and limitations in real-
life problem-solving situations), and (ii} the nature of their own
personal problem-solving and model-constructing capabilities.

When cognitive objectives of instruction include the construction
and modification of models for describing, explaining, constructing, modi-
fying, manipuiating, and predicting patterns and regularities that govern
the behavior of complex systems, the six categorics described above repre-
sent distinct types of deeper and higher-order understandings associated
with models and modeling. Furthermore, as Table 1 shows, they also
correspond nearly one-to-one with the most interesting new categories of
objectives emphasized in the Curriculum and Evaluation Standards for School
Mathematics published by the National Council of Teachers of Mathematics

Tabls 1. Relationships Betwesn NCTM Standards and Model-Based
Knowledge and Abilities

New Categories of Highar-Oner Understandings Model-Based

NCTM Objectives

mathematics as
problem solving

number sense
& estimation

mathematical
structure

mathematics as
communication

mathematics as
reasoning

mathematics as
connections

mathematical
disposition

of Cognitive Objectives

think about
“real life” situations

A

think about
models

. think about
representation systems

think about
thinking

think about
systems of models

think about
real world applications

think about mathematics
and personal capabilities

Process Obj:ctives

analyze & interpret
problem situations

generalize & extend
overall solutions

translate within and
between modes of
representation

plan & execute
solution steps

monitor & assess
intermediate & final
results

identify similarities
and differences

translate and interpret
between models and
the real world

Q
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{(NCTM, 1989). The table also shows how the seven categories of NCTM
objectives correspond with model-based process objectives that we have
identified in past publications (Lesh, 1990).

ACTIVITIES THAT ENCOURAGE THE DEVELOPMENT OF MATHEMATICAL MODELS

This section contains several examples of model-eliciting activities
in real-life situations (Problems 1-4). Each example has been used with
middle school students through adults, with problem solvers working either
individually or in three-person teams. Each activity takes at least 30 to 60
minutes to complete. The solutions involve constructing interpretations
thatare based on ratios or proportional reasoning (A/B=C/D).Noartificial
restrictions are placed on time, tools, or resources; in particular, calculators
and computers are available. The goal is not simply to produce answers to
specific questions. Instead, the responses involve producing a description,
or an explanation, or a prediction which requires students to document
explicitly how they are thinking about the situations. Then the descriptions
and explanations that students construct are used as models to interpret
other structurally simila: situations. In other words, the problems are more
like case studies in professional schools than they are like traditional kinds
of textbook word problems.

Problem 1

THE BANK ROBBERY PROBLEM
Students were shown the following newspaper article.

Two gunmen held up the Second National Bank, around
ten thirty this morning. One was a middle-aged man in a grey
suit, who pointed a large handgun at a frightened teller and
demanded cash. Another man pulled a shotgun out of a laundry
sack and held it on the customers, while tellers filled the sack
with money, most of it in smail bills. The two perpetrators
escaped before police arrived.

“It was awful!" exclaimed Louise DiChello, head teller for
Second National. "l pushed the alarm button. Where are the
police when you need them?"

Responding to charges of slow response to emergency calls,
Police Commissioner Tyrone Campbell claimed that the bank's
silent alarm did not go off during the robbery. “If the hardware
fails, the police get the blame."

Bank President George Bromley stated that, according to his
accounting, the amount stolen was close to a million dollars.
“The bank’s insurance will cover the loss. But it's sad to see
thieves and thugs get awiy with crimes like this!"

Anyone having information about today’s robbery should call
the CrimeStoppers HotLine 1-800-STOP*IT.

Pioblem A: Could the events really have happened as told in the
newspaper story? Could two robbers escape with a million dollars in
small bills in a laundry sack as reported? - - - Analyze the situation.
What suggestions would you offer for solving this crime? Write a
note to the detectives on the case explaining your reasoning. Give
details so they will understand.

A
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Problem B: Imagine you are a detective investigating the crime. An
employee of the bank tells ycu that Bank President Bromley has been
suffering financial setbacks recently. She wonders if the robbery was
fake. You wonder about the large sum reported stolen, and do some
calculations to deduce whether it would have been physically possible
to carry out a million dollars in small bills as described. You figure an
American dollar bill weights about 1 gram. If 50% of the stolen
money was $1 bills, 25% was $5 bills and 25% was $10 bills, estimate
how much the loot would have weighed. Would it have been
possible for 2 robbers to carry this amount out of the bank?

Problem 2

THE CD TOSSING GAME

For a popular carnival game, a player
tesses a coin onto a gameboard that
looks like a checker board. if the coin
touches a lines on the gameboard the
player loses. If not, the player wins!
Players get three throws for a dollar!

You've been asked to design a similar
game for a fund raising caraival at your
school. For prizes, a local record store
will sell up to 100 CD's to your class for $5 per disc. You can choose any
discs you want just as long as the regular price of the CD is less than
$20. To make the game more fun, you've decided to let players throw
old scratched CDs rather than coins. Two sizes of CDs can be used

(3 inch discs and S inch discs). So. the cost of three throws can depend
on which size a player chooses to throw.

All plans for games must be approved by the carnival planning
committee. You want to make as big of a profit as possible. But, if too
few people win, people won't want to play the game. Write a plan to
submit to the casaival planning committee that includes details about
the size of the game board, the cost of throws, the chances of winning,
and an estimate of the expected profits.

Prablem 3
THE SEARS CATALOG PROBLEM

Lroblem: Fred Findey began teaching here at the high school 10 years
ago. He and his new bride rented an apartment at 318 Main Street for
$315 per month, and he also bought a new VW Rabbit for $6,200. His
starting salary was $16,300 per year. This year, Fred's sister, Pam, also
began teaching at the high school. Pam, too, just got married. In fact,
she rented the very same apartment as her brother did 10 years ago,
only now the rent is $610 per month. She also bought a new VW
Rabbit that sold for $13,700. Using this information, and these (see
items below) newspapers and catalogs, write a letter to the School
Board recommending (and justifying) how much you think Pam
should get paid.

note:  Students were given: (i) a calculator; (if) two Sears catalogs -- one
current, and the other from 10 years ago, and (iii) two
newspapers - one current, and the other from 10 years ago.
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Problem 4

DON'T DRINK & DRIVE HOTLINE

To prepare for the problem, show students the following newspaper
article.

Drunk Driving Laws for the New Year

The new drunk driving law will go into effect at 12 midnight
January 1, meaning New Year's Eve celebrators should have
designated non-drinking drivers in their group. A driver who is
found to have a blood alcohol level of 0.05% or more will be subject
to a $500 fine and will risk prosecution and a possible prison term

New Year's Eve party-goers should be aware of a few facts. A 12
ounce can of beer, a 5 ounce glass of wine and a | ounce glass of
hard liquor should each be counted as one drink. The effect of one
drink on a heavy person is much more than the effect of one drink
on a lig 1t person.

Experts point out that once a person has stopped drinking, the blood
alcohol lc vel drops about 0.015% every hour. For example, a 140
pound person with a blood alcohol level of 0.10% would have a
blood alcohol level of 0.085% after one hour and a blood alcohol
level of 0.070% after two hours.

While a person can legally drive at blood alcohol levels of 0.04% or
lower, experts emphasize that impairment is still possible, and the
best policy is to not drink and drive.

Most restaurants and banquet halls are offering free soft drinks to
designated drivers and free taxi rides home upon request. For party-
goers who prefer to avoid driving or riding with others, overnight
packages are available at most local hotels .

Bleod Alcohol Concentration (%)
Within One Hour

Number of Drinks
1 2 | 3 | 4 5
0.04 0.09 Q.15 0.20 0.25
0.03 0.08 A 0.16 0.21
002 0.06 A 0.14 0.18
0.02 0.05 i 0.12 0.15
0.02 0.05 . 0.10 0.13
0.01 0.04 . 0.09 0.12

Praoblem: Your community has decided to start the Don't Drink &
Drive Hotline. As part of this group effort your class has been asked
to develop a method so that hotline workers can quickly estimate a
caller's blood alcohol level. Develop useful tools {for example,
tables, graphs, computer software, etc.) that will be helpful to
hotline workers and describe how to use your tools/method for
scenarios like those below.

Test Your Materials: After developing your tools/method for
estimating a caller's blood alcohol level, test your materials by role
playing a telephone call. Have someone (a friend, a classmate, a
parent, etc.) read one of the scenarios below and pretend to cali you.
You should pretend to be the hotline employee who answers the
call. Ask questions to gather the information that you need and use
your quick-and-easy-to-use method to estimate the blood alcohol
level of the caller.
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SCENARIO I. Jake ate lunch between 12:00 and 1:00 ard had two
glasses of beer. He weighs 240 pounds. It is now 3:00. Pretend that
you are Jake and are calling the DDD Hotline.

SCENARIO 1L Shortly after arriving at a friend's house at 6:00,
Regina had a cocktail. Dinner was served from 7:00 to 9:00. With
dinner she drank two glasses of red wine. Regina weighs 112
pounds. It is 11:00. Pretend that you are Regina and are calling the
DDD Hotlire.

Tocreate effective model-eliciting activities, one of the main goals
is to create problems that encourage (and do not discourage) sense-making
based on students’ personal knowledge and experience. A second rule is to
focus on problems that encourage the construction and investigation of
elementary mathematical models that are likely to have the greatest power
and utility (short-term and long-term) for the students who are involved. A
third rule is to create tasks in which students go beyond {unconscious)
thinking with the models to also (consciously) think about them, for
example, by constructing them, by modifying and adapting them for a
variety of purposes, and by investigating their structural properties in a
variety of meaningful situations. A fourth rule is to ensure that an appro-
priate range of problem types, response types, and interpretation possibili-
ties are represented, and, in particular, to ensure that realistic types of
givens, goals, tools, settings, or procedures are not neglected. A fifth rule is
to avoid problems that have only a single level and/or type of correct
response.

The last rule is especially important because, in general, the only
way to create problems with only a single correct answer is to eliminate the
phases of problem solving that focus on processes such as problem interpre-
tation, orresponse justification, or the testing and refinement of hypotheses
aboutunderlying patterns and regularities. In other words, to eliminate the
possibility of more than a single correct answer, it is usually necessary to
eliminate exactly those phases of problem solving in which attention is
focused on the underlying mathematical structure of the problem and on
deeper and higher-order mathematical understandings of the mathemati-
cal structure.

To create activities that encourage students to construct signifi-
cant mathematical models, authors should ask themselves, “What kinds of
situations create the need for people to create models, whether they are
working in mathematics, in science, in business, orin everyday life?” Answers
to this question include the following:

& Models are needed when it is necessary to make predictions based on
underlying patterns or regularities, for example, to anticipate real
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events, to reconstruct past events, or to simulate inaccessible
events.

Models are needed when constructions or explanations are requested
explicitly, for example, for describing hypothesized patterns and
regularities, or for describing decision-making situations in
which too much or not enough information is available.

Models are needed when it is necessary lo justify or explain decisions,
for example, by describing underlying assumptions, conditions,
and alternatives.

Models are needed to resolve interpretation mismatches, f r example,
between hypotheses and reality or between two competing '
interpretations, predictions, or explanations of a given situation.

Models are needed when it is necessary to recreate and critically analyze
conclusions or descriptions generated by others.

In general, to develop effective model-eliciting activities, one of the major
goals is to create meaningful contexts in which students will recognize the
need for a model. Then model construction tends to follow naturally.

RULES OF THUMB FOR WRITING EFFECTIVE MODEL-ELICITING ACTIVITIES

Twenty years agc, when authors of this chapter first began to
conduct research on problems that people today refer to as authentic
performance activities, we usually cited reality as our primary criterion for
distinguishing “good” problems from “bad” (see, for example, Bell, Fuson,
and Lesh, 1976). We still consider realism to be a praiseworthy goal, though
realism is a principle thatis notso simple and straightforward to implement.
To see why, consider the following:

s Problems that are real for authors or teachers often have little
to do with a middle schooler’s reality. For example, a teenager’s
main interests often center around fanciful situations, or
around “what if” distortions of the real world, rather than
around reality in the more traditional sense.

m A topic that is timely (or “hip”) one year often is treated as old
fashioned the next, and one student’s reality is often quite
different from another’s. For example, a rural middleclass white
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male’s reality tends to be considerably different from that of an
inner-city, lower-SES black female.

m Videodisc portrayals of real-life situations sometimes encourage
students to suspend their reality judgments in the same way that
they do when they watch movies and television. Explorations
with concrete materials (such as Cuisenaire rods) frequently
turn out to be as abstract as if they had been done with written
symbols.

u Computer-based explorations sometimes become very real to
students, even though they often make no reference at all to
objects or events in students’ everyday lives.

m Problems that focus on skills for low-level employment often
turn off the very students who were expected to consider them
relevant. On the other hand, pure mathematics activities (for
example, involving pattern exploration in number theory)
often give students a realistic view of mathematics as it really is
for a research mathematician, even though the experiences
might seem far removed from the students’ everyday life.

Over the years, another problem attribute proved to be even more
fundamental than “reality” for describing of the kind of problems that we
want to emphasize. That is, the real purpose of emphasizing realistic
problems was to encourage students to construct and investigate powerful
and useful mathematical ideas (that is, models and principles associated
with models) based on extensions, adaptations, or refinements of their own
personal knowledge and experience. Therefore, we refer to our most
effective problemsas model-¢liciting activities (Lesh and Kaput, 1988) because
their solutionsinvolve constructing, transforming, investigating, modifying,
integrating, differentiating, or using mathematical models or patterns. For
example, typical solutions to the Sears Catalog Problem, described in the
preceding section, illustrate the kinds of mathematical ideas students invent
in model-eliciting situations.

When we first began to gather information about students’ solu-
tions to the Sears Catalog Problem, the main model (or reasoning pattern)
that we expected students to construct had to do with proportional reason-
ing of the form A/B=C/D. In fact, most of the students we observed did
indeed end up thinking about the problem using some type of proportional
reasoning model. But a high percentage went far beyond an interpretation
of the problem based on simple ratios, proportions, or linear equations. For
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example, to find a useful way to think about the situation, students often
invented ideas such as weighted averages, trends, interpolation, extrapola-
tion, data sampling, margins of error, or others that their teachers thought
were too sophisticated for youngsters to learn.

In their solutions to the Sears Catalog Problem, students also

invented surprisingly sophisticated ways to deal with the following kinds of
issues:

u Data sampling. For example, how many, and which, items should
be considered? Which should be ignored? What should be
done about unusual cases (such as the fact that the cost of
pocket calculators decreased, while the cost of most other items
increased)? How should the data be classified or organized?
What kinds of patterns and relationships (for example, additive,
multiplicative, exponential) should be hypothesized?

w The quantification of qualitative information. For example, what
weights should be assigned to various kinds of information?
How can information be merged that is based on different
kinds of quantities or units of measure?

w Conditional results. For example, because of equity issues, or risks
and benefits associated with alternative answers, final decisions
about salaries should depend on additional information about
conditions in the past and perhaps on assumptions pertaining
to the present and future.

In fact, we found that, when model-eliciting activities are used to
encourage students to make sense of problem-solving and decision-making
situations based on their own personal knowledge and experiences, stu-
dents who had been labeled average or below average often emerged as
extraordinarily talented, because they routinely invented (or significantly
extended, modified, or refined) mathematical models thatwent far beyond
those that their teachers believed they could be taught. (Lesh and Akerstrom,
1982; Lesh and Zawojewski, 1987)

AN EXAMPLE: TEACHERS SOLUTION OF A MODEL-ELICITING PROBLEM

Many K-8 teachers have not had much experience working on
project-sized, model-eliciting problems. Therefore, before they try to create
such problems for their own students, and before they try to assess students’
responses to such problems, it is useful for them to participate (as students)
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in a few problems that were explicitly designed to fit their own everyday
decision-making activities.

The Math Placement Problem (Problems 5A-5D) was designed
especially to help teachers gain firsthand experience with realistic model-
eliciting problems. It was also designed to focus on two questions that are
special concerns for many teachers: (i) What understandings and abilities
should be emphasized when students are allowed to use technology-based
tools? (ii) What understandings and abilities should be emphasized when
students are allowed to work in teams?

Problem 5A
THE MATH PLACEMENT PROBLEM

Problem A: Imagine that you are the teacher at a middle school that
has developed its own performance assessment program. The tests are
not multiple-choice, and students' achievement scores reflect not only
test performance but also teachers' classroom observations and
evaluations of students’ work portfolios. You've been given the
following assignment.

Your school offers three sections of 9th grade mathematics classes.
Your assignment is to work with the school counselor and another
teacher to develop a policy for assigning students to one of these three
sections. Wrile a letter to the principal describing the policy that you
recommend for assigning students to the available courses. Then,
demonstrate how your policy should be applied to the students whose
test scores are shown in the following data sheet.

Math and Reading Achievement (Grade Level Equivalent Scores)

IdGrade MthGrade 5th.Grade £thGrade 7th Grade 8th Grade
Math Read Math Read Math Read Math Read Math Read Math Read
21 30 29 35 33 50 36 62 59 78 86 82
38 31 38 31 . 48 48 55 59 61 58 61
48 50 57 62 4 72 76 80 88 91 108 92
48 49 50 58 § 78 61 96 75 108 8. 126
50 59 68 71 [ 88 102 11.0 108 121 0 122
50 53 58 59 X 66 72 73 75 78 X 8.1
15 23 26 35 . 45 48 50 720 75 : 88
23 15 58 60 E 88

33 31 45 48 X 55 68 69 78 81 A 9.2
56 51 79 70 k 75 96 80 108 83 . 78

COMMENTS FROM PREVIOUS TEACHERS

Al works hard. He always turns in his homework, and he even comes in
after class for help. But, math has been difficult for him. - - - The
projects in his portfolio are not inspircd: but they show his dedication.
Poor attendance. Often late for class. Since her mother died two years
2go, Barbara has had to take care of her younger brothers and sisters at
home. Her homework is rarely finished.
Charles has consistently worked hard and is a very productive contnbutor
10 class discussions, He scems to know a great deal more than he has been
able to demonstrate on tests.
David is gaining confidence in himsclf. His success in sports scems to be
__ rubbing off on other activities. - - - David is a leader.
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Problem 5B

Problem 5C

Edith is a gifted student. Recently, however, she seems 10 have lost
interest in her work. Although she finishes assignments on time, she
doesn't seem to devote much time to them.
Fran is working to the best of her ability, but she needs work on basic
skills. She spends too much time on low level skills, and still low level
mistakes tend 10 hurt her performance on tests and projects.
Greg's projects are the bestin the class. Heis also good at cmatwt- types of
problem solving - especially in g y. Greg'si behavior has
interfered with his progress thls year and has occastonally disrupted the
whole group. He is the class clown.
Hank onty spoke Spanish when he :noved here three years ago. He has
shown tremendous improvemaent this year, but his previous training has
been rather weak so he still has a lot (o leamn. If his remarkable
improvernent continucs he could become the best in the class.
lda has a lot of natural ability bu! she hasn't worked up 10 her potential
of failure to compl 14 ts and to pay attentlon in <lass.

Jan has discovered boys. She can be a good student when she wants to;

__ lately, she scems to have lost interest. She often falls asleep in class.

Problem B: After writing a trial policy for sorting students into your
school's three levels of mathematics courses, the other teachers you've
been working with got a new idea. They transformed the students'
scores as shown below. Look at what they did. Then rewrite your
policy In any way that you believe is appropriate to take into account
the new information.

Math and Reading Scores Compared to Actual Grade Level

3d Grade  4th Grade 5thGrade 6th Grade ZthGrade Ath Grade

MWMMdMMMMMMMMM
Al £09 00 -1.1 05 -17 02 -1 08 06 02
Barb 08 Ot -02 09 -05 -0.2 ~|.2 05 b1 09 22 .19
Carl 18 20 17 22 18 22 16 20 18 21 28 12
David 18 19 10 t8 05 28 01 36 05 38 08 48
Edith 20 29 28 31 30 38 42 50 38 51 30 42
Fran 20 23 18 19 16 16 12 13 05 08 00 01
Greg -15 07 -14 05 08 05 -1.2 10 00 05 05 08
Hank -3.7 45 12 -10 18 08
Ida 03 01 05 08 06 05 08 09 08 11 09 12
Jan 26 21° 39 30 40 25 36 20 38 13 00 -02

Problem C: The school counselor you've been working with has found
some other ways to simplify (and graph) the data you were given. For
example, an average score was caiculated across all six grades; and the
following graph was drawn. Again, modify your policy in any way that
you believe is appropriate to take into account alf of the information that
is now available. :

Math Scores (Only) For All Grade Levels

drd 4th  5th  6th Zth  Bth Anux:
09 11 1.7 24 -1 0.6
8 -02 05 -2 -l -2.2 -().7
18 17 18 16 1.8 28 19
18 1.0 0.5 0.1 0.5 08 08
20 28 30 42 38 30 3
20 18 1.6 1.2 05 0.0 12
45 -14 08 12 00 05 0.7
37 -2 18 -1.0
03 05 06 08 038 09 0.7
26 39 4.0 36 38 0.0 30
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Problem 5D

Average Math Score Across All Grades
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Problem D: While playing around with the graphing capabilities of the
spreadsheet you've been using to graph the data shown in problem 3,
the computer constructed the following graph. Does it show anything
new that you should consider? Again, modify your policy in any way
that you believe is appropriate to take into account all of the
information that is now avail:ble.

Trends In Math Scores Across All Grades
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One Solution to the Math Placement Problem

One group of teachers used the available analyses and graphs to support
the recommendation that the school should abandon its previous the
policy of sorting students into low, middle, and high ability groups.
Instead, the recommendation was made that three equivalent math
groups should be created, with “difficult” students being distributed
equally in the three sections.

To help teachers recognize the sirengths and needs of each student, the
teachers also recommended that executive summaries of the preceding
graphs and analyses should be made available to teachers.
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Because solutions to the Math Placement Problem involve using
powerful computer-based tools, problem solvers no longer needed to be
preoccupied with routine calculation and graphing skitls. Instead, they are
able to focus on conceptually oriented activities such as constructing
appropriate and useful ways to think about the information that was
available, or such as analyzing and interpreting results produced by comput-
ers or colleagues.

An important attribute of the Math Placement Problem is that the
givens involve more than just piecesof data. They also involve patterns of data;
and, they involve more than a single type of qualitative or quantitative
information. Furthermore, the goal involves more than simply producing a
specific answer to a particular question. Itinvolves creating a policy that can
be applied to a whole class of specific cases. In fact, appropriate responses
involve more that just making decisions (or giving answers). They also
involve justifying and explaining decisions (or answers); they involve con-
structions in which students explicitly describe the data, patterns, and
relationships that their interpretations of the problem take into account.In
other words, students use the computer-based tools to construct responses
in much the same way that geometry tools are used to construct geometric
objects. In this way, the quality of responses depends on constructions
themselves as well as on decisions based on the constructed information.

Because the Math Placement Problem involved a familiar situa-
tion for the teachers who worked on it, they noticed that many of their own
most important decision-making activities involved interactions with mem-
bers of their groups and with technological tools (for example, spread-
sheets). They also noticed that people who were good at dealing with the
problem situation were not necessarily those whowere bestat textbook word
problems because different kinds of knowledge, abilities, skills, and person-
alities were often needed. For example, in the Math Placement Problem,
when they worked together in three-person teams, and when they used
computer-based tools, different people generally assumed different roles
(information gatherer, manager/coordinator, data cruncher, reality
checker), which often shifted throughout the problem-solving process.
Therefore, many of the most important abilities that were emphasized
involved coordinating and communicating plans, processes, and results
among people playing different roles.

When problem solving focuses on the development of models for
thinking about realistic decision-making issues (rather than on linking
together factual and procedural rules for getting from givens to goals),
technology-based tools generally make it easier for students to focus on
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higher-order mathematical activities by minimizing distractions associated
with computational drudgery. Technology-based tools not only change the
computational and procedural demands associated with problem-solving
activities, they also change the conceptual demands, for example, by
creating new possibilities for selecting, organizing, «nd interpreting infor-
mation and by forcing students to externalize (and be explicit about)
interpretation frameworks that otherwise may have remained internal,

AN EXAMPLE: TEACHERS’ IMPROVED VERSIONS OF EXISTING PROBLEMS

To help teachers create realistic problems that focus on authentic
mathematical modeling activities, it is useful to begin by analyzing (and
trying to improve) problems from exemplary resources such as the projects
that are described throughout this book. For example, Problem 6A was
taken from the NCTM’s 1989 Curriculum and Evaluation Standards for School
Mathematics. A transcriptof one teacher’sreportand revised problem follows.
(Note: The woman submitting this report was actually a softball player:)

Prablem 6A

The Original Softball Problem

The table gives the record for joan Dyer's last 100 times at bat during
the softball season. She is now coming up to bat. Use the data to
answer the following questions:

What is the probability that Joan will get a home run? What is the
probability that she will get a hit? How many times can she be
expected to get a walk in her next 14 times at bat?

Home Runs

Triples 2
Doubles 16
Singles 24
Walks 1

Quts = _38
Total 100

One T-acher's Analysis Of The Softball Problem

Critique: On the surface, this problem appears to be embedded in a real-
world situation: Joan is coming up to bat, and the problem description
gives some data about her prior performances. But, in a real situation,
it wouldn't be sensible tor sameone (other than a math teacher) to want
to know the answer to the questions as they are stated (concerning prob-
ability of a home run, or the probability of a hit). In fact, simply comput-
ing this “probability” using the intended rule depends on ignoring
common sense and/or practical experience. In reality, the probability
depends on who is pitching (Are they left handed or right handed?), on
field conditions or the weather, and on a lot of other factors that people
who play softball are aware of (Who is in a slump or on a streak? Who
is good under pressure). Furthermore, since we don't know who is
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asking the question, or why, we can't know what to take into account,

or how accurate the answer needs to be, or what the risks or benefits

might be. Therefore, the criteria for judging the quality of answers are

not implicit to the situation; and, solutions must be judged according to

whether they conform to the calculation that was expected, rather than

according to whether they succeed in any practical or meaningful sense
- of the word.

Overall, | do not think such a problem is realistic, or that it promotes
authentic performance. Real softball players would actually have to
turn off their "real life" knowledge and experience.

Analysis: In this problem, it is not particularly necessary to have joan
coming up to bat right now. In fact, for the third question we might
wonder what coming to bat, at this particular moment in time, has to
do with expectations about walks for the next 14 times at bat, which
may not even happen in the same game. Is there some reason, now
that Joan is coming up to bat, to want to know her expected number of
walks for the next 14 times at bat? Y/hy not the next 15 times at bat? Is
it possible that having Joan zt bat in the first place was only the
awkward result of an well-intentioned effort to create a life-like
context {for a problem with essentially one appropriate solution path
that leads to a single "right” answer)? Or was it a superficial gesture to
sugrest that even girls play sports? If not for either of these reasons,
why it is there?

: Here is a suggestion for improving this
problem, Notice that the "math answer” is not an end in itself. It is a
means to an end (or a tool for informing actions, decisions, and
judgments). If Joan really is coming up to bat now, the mathematics
should address a plausible question that might occur in that situation.
I think that the revised item asks a more authentic question in the
sense that it asks for a decision that might be required in the context.

Problam 68

The Improved Softball Problem

You are the manager of a softball team. It is the bottom of tie ninth
inning, two outs gone, and no ore is on base. Your team is one run
behind. You plan to send in a pinch hitter in hopes of scoring the tying
run. Your possibilities are Joan, Mary, and Bob. Their batting records are
given in the table below. Who would you chouse to bat? Explain your
reasoning. )

loan Mary Bob
Home Runs 9 15 6
Triples 2 5 3
Doubles 16 11 8
Singles 24 34 18
Walks 11 20 12
Outs 38 85 36

The main difference between the original softball problem and the
madified softball problem is that the original asked a “school question” but
didn’t provide any clues about the reallife issues or decisions that the
response was intended to inform. By contrast, the modified problem (6B)
calls for a realistic response to a situation that might really occur in the lives




of the people who were asked to work on the problem. It is the problem
solver’s responsibility to identify and address relevant mathematics questions.

One of the main reasons for emphasizing realistic decision-mak-
ing situations is to encourage students to make sense of the problems based
on extensions of their own personal knowledge and experiences; embed-
ding problems in such contexts tends to be the only way for sensible
judgements to be made about such things as: (i) how accurate the answer
needs to be, (ii) what the consequences of making an error might be, and
(iii) how quickly a response must be generated.

In real-life situations, people’s three-second answers tend to be
quite different from their five-minute answers, or their sixty-minute answers;
high-stakes answers tend to be quite different from low-stakes answers. This
is why one of the most important abilities associated with real-life problem
solving involves sizing up problems in appropriate ways; it is also why some
of the most important kinds of estimation skills are used to support these
sizing-up processes.

THE NATURE OF REALISTIC SITUATIONS IN WHICH MATHEMATICS IS USEFUL

The problems in the preceding sections illustrate a number of
important characteristics of realistic situations in which mathematical mod-
els are useful. This section will give a brief summary of some of these
characteristics as they relate to givens, goals, solution paths, and response
assessments.

Concerning the nature of realistic data sources: In realistic problem-
solving and decision-making situations (such as the Sears Catalogue Problem
or the Math Placement Problem), judgments often must be based on patterns
or trendsin data, notjustisolated pieces of information, and on hypothesized
regularities beneath the surface of things, not just on information that is
given by direct perception. Also, the relevant information often involves
several different types of qualitative and/or partly-quantified information
that must be quantified or coded in appropriate ways before relevant
calculations can be made. Furthermore, an overwhelming amount cf infor-
mation may often be relevant; this information may need to be filtered,
weighted, simplified, organized, or interpreted before it is useful. Some
relevant information may not be available, yet a decision may be needed
anyway, within specified time limits, budget constraints, and margins for error.

To create model-eliciting activities of the type described in this
chapter, problems must somehow create the need for the relevant models,
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so that meaningful patterns can be used to (i) base rapid decisions on a
restricted set of data, (ii) fill holes or go beyond a minimum set of
information, (iii) provide explanations of how facts are related to one
another, or (iv) provide hypotheses about missing or hidden objects or
eventsthatmayneed to be actively sought out,generated, or (re) interpreted.

Conceming the nature of realistic demands on knowledge: Realistic
probiems tend to emphasize the use of organized systems of knowledge, not
just isolated facts, skills, or bits of information. In fact, model-eliciting
problems generally cannot be solved using a single computational formula.
Instead, relevant knowledge usually must be integrated from a variety of
topics. For example, in mathematics education research on children’s
natural solutions to real problems, it has been shown that solutions often
draw on mixes of ideas and procedures from a variety of topic areas ranging
from arithmetic, to measurement, to statistics, to geometry, to'ideas and
procedures thatare not taughtin schools (Carpenter, Moser,and Romberg,
1982; Confrey, 1990; Fuson, 1988; Lesh and Akerstrom, 1982; Steffe, 1988).
Similar observations have also been made by educational anthropologists
who have studied the everyday problem solving behaviors of tailors, carpen-
ters, cooks, shop keepers, shoppers, or other ordinary folks (Carraher,
Carraher, and Schliemann, 1985; Rogoff and Lave, 1984; Saxe, 1991). In
both higher mathematics and everyday problem solving, solutions to real-

life problems often reside at the borders, intersections, and fringes of
traditional curriculum categories.

In general, the most cffective model-eliciting problems can be
interpreted/quantified/modeled in several alternative ways, and the inter-
pretations are based on models that are created by extending or refining
students’ real-life knowledge and experiences.

Concerning the nature of realistic tools and resources: In real-life situa-
tions, few problems occur in an isolation booth where the onlyavailable tools
are pencilsand paper. Infact, in mostreal-life problem- solving situations, the
tcolsand resources that are available include not only pocket calculators but
also computers, resource books, and colleagues or consultants.

When such toolsand resourcesare available, new types of concep-
tual capabilities, generally quite different from the pencil-and-paper com-
putational abilities traditionally emphasized in schools, become important.
For example, when a graphics-oriented spreadsheet is used in problems
such as the Math Placement Problem, trial results are often fast and easy to
generate and what-if explorations easy to conduct. Therefore, attention can
shift away from the production of results toward higher-order processes




such as (i) analyzing the appropriateness of alternative assumptions or
interpretations of data, (ii) planning, monitoring, and assessing procedures
that are executed, (iii) conducting explorations about alternative levels and
ways of collecting, organizing, or coding available information, or (iv) testing
and revising interpretations and trial solutions to adjust the precision,
accuracy, risks, and benefits associated with hypotheses and predictions.

In general, when students Lave access to realistic tools and re-
sources, the natural tendency is for deeper and higher-order model con-
struction processes to emerge. The kinds of skills thatare emphasized go far
beyond number crunching to involve processes such as quantifying qualita-
tive information, estimating quantities and measures, drawing informative
diagrams or graphs, generating symbolic descriptions (using written or
spoken language), or generating sequences of commands to be executed by
a computer, a colleague, or an assistant. In fact, the kinds of skills that
emerge as important often involve far more than simply getting from the
givens to the goals that are specified by others. For example, relevant skills
often involve giving commands and finding usefulways to think about givens
and goals.

To create problems that are model-¢eliciting and thatalso involve
explicitly documenting the model that is elicited, computer-based tools are
often quite useful. They make it possible for students to produce complex
constructed responses in which they explicitly reveal how they are thinking
about the problem situations. For example, in situations similar to the Math
Placement Problem, model-eliciting problems should be stated so that the
spreadsheets and graphs that students produce will provide direct evidence
about (i) whatinformation is being considered, (ii) how the information is
being interpreted, (iii) what relationships or patterns are being taken into
account, and (iv) what operations or transformations are considered to be
appropriate. In other words, the spreadsheet and graphs can sometimes
explicitly reveal what models (or systems) students use to interpret/de-
scribe/explain problem situations.

Concerning the nature of realistic settings: In real-life situations that
arerelatively complex, people often work in groupsin which differentgroup
members have differentinterests, experiences, and expertise. When diverse
groups work together, certain higher-order capabilities tend to be empha-
sized such as (i) partitioning problems into smaller pieces that can be
attacked by different people, (ii) partitioning solution processes into differ-
entrolesand functions so that people with different expertise and tools can
work together cooperatively, (iii) defining questions, givens, and goals so
that outside help can be sought, and (iv) communicating, planning, moni-
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toring, and explaining results to others inside or outside the group. Also,
because information must be shared among members of the group, there
tend to be both the need and the opportunity to externalize internal
reasoning processes and to think about thinking. In particular, activities
tend to be emphasized that the NCTM’s Curriculum and Evaluation Standards
Jor School Mathematics refer to under headings such as “mathematics as
communication” or “mathematical connections.”

To create the kind of model-eliciting problems described in this
chapter, itis often useful to design the situations in such a way that students
assume a variety of differentroles. Sometimes this can be done by assigning
one student to be the manager, while preparing ahead of time for other
students to be proficient in the use of a potentially relevant tool (such as a
spreadsheet) or collection of relevant background information.

Concerning the nature of realistic solution processes: In realistic situa-
tions that require the construction of a model, several modeling cycles may
be needed to create an adequate way to think about (or describe) thegivens,
goals, and solution paths. For example, in cases similar to the Math
Flacement Problem, each cycle may involve goal clarification, question
refinement, trial solution evaluation, data (re)interpretation, and a variety
of other sense-making activities. That is, students go beyond simply using

models that already exist: they construct new models by modifying, extend-
ing, integrating, cr refining existing models. In fact, even when it is possible
to use an available model without modification, some noncomputational
activities generally emerge as important, such as (i) mapping data from the
real world into the model world (for example, by filtering, interpreting,
parsing, coding, and organizing available information), (ii) carrying out
explorations within the model world (for example, by formulating ques-
tions or hypotheses that can be verified or rejected), or (iii) mapping from
the model world into the original problem situation (for example, to
evaluate explanations, hypotheses, trial results, or predictions).

To create the kind of model-eliciting problems described in this
chapter, it is important for students to go beyond thinking with a given
model (graph, table, or symbolic description) to thinking about the model
and its underlying assumptions (Campione, Brown, and Connell, 1989).

Concerning the nature of realistic goals: When people shop for grocer-
ies, purchase automobiles, or engage in other everyday decision-making
situations, the goals often involve far more than simply producing an
explicitly requested mathematical answer to someone else’s well-formed
question. Justifying or explaining decisions is often as important as simply
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making them. To decide whether to believe conclusions cited in newspaper
editorials and advertisements, for example, itis important to ask insightful
questions and to critically analyze, critique, or explain answers produced by
others.

At a time when newspapers such as USA Today are beginning to
look more and more like spreadsheets with graphics, studies of adult literacy
confirm that it is naive to assume that the only kind of mathematical objects
that ordinary people find useful are whole numbers. For example, even to
donothing more thanintellige.. reac the sports pages ofa newspaper, the
kinds of mathematical products that may need to be generated include (i)
numbersthztare based on patterns or trends in data rather than on isolated
and explicitly stated facts; (ii) estimates that may involve ratios, or rates, or
Junctions involving relationships among several quantities, rather than only
quantities or measures that can be observed directly; (iii) questions or
hypotheses or predictions that can be verified or rejected; (iv) rules to explain
patterns or regularities that are embedded in diagrams or written /spoken
statements; (v) organizational schemes based on tables, graphs, rankings, or
coordinate systems that clarify, highlight, or make some factors easy to see,
at the cost of distorting, disguising, or eliminating other factors; (vi) graphs,
arithmalic seniences, equations, diagrams, or other concrete or symbolic descriptior.
or representations that explain (or make sense of) a given situation; (vii)
statements that are logically deduced from known facts, rather than being
calculated; (viii) probatilities that describe the occurrence of given
nondeterminant events; (ix) statistics that summarize or describe informa-
tion about collections or patterns of data rather than simply reporting the
measures of pieces of data; or (x) shapes (or measures, or coordinates, or
constructions) that fit specified conditions.

Furthermore, when such objects are recognized aslegitimate and
useful products of mathematical activities, the kind of problem-solving and
decision-making goals thatare addressed include (i) optimizing the results of
given processes, (i) simplifying or modulanizing the procedures needed to
produce given results, (iii) finding detours (or alternative ways) to use under
alternative conditions, (iv) finding fair ways to partitiongiven quantities, (v)
diagnosing or corvecting errors in other peoples’ results or conclusions, (vi)
specifying paramelers that result in desirable outcomes, (vii) comparing, choos-
ing, or ranking different kinds of objects or events, or (viii) manipulating a
given system in ways that presumably improve its functioning even though
the results of alternative policies might not be possible to observe.

Conceming the nature of realistic assessments of results: In realistic
problem-solving and decision-making situations, students seldom need to

cu




Asscasing Authentic Mathematical Performance

rely on the judgment of an external authority (such asa teacher, or textbook
author, or test maker) to tell them whether their answers are acceptable.
Consider the case where the goal is to generate a plan, or a description, or
an explanation of a realworld situation. A variety of different types and
levels of responses are usually possible (for example, using verbal rules,
symbolic equations, diagrams or graphs, or concrete models). Yet, in most
cases, there still tend to be clearand objective criteria to determine whether
responses are good enough for a given purpose. For example, the quality of
a response usually depends on factors such as (i} the type and amount of
information taken into account, (ji) judgments about risks and benefits
associated with alternatives, (iii) the problem-solver’s awareness of possible
sources of errors (for example, due to over-simplifications or assumptions),
(iv) hypothesized trends and patterns that explain regularities beneath the
surface of things, (v) awareness of conditions that might result in different
opportunities or constraints, (vi) resources that are or are not available (for
example, time, money, tools), and (vii) purposes and preferences of stu-
dents themselves. Also, the quality of responses often depend on answers to
questions such as, Is it more important to generate answers quickly or with
high degrees of accuracy? Can trial answers be tesied and revised? Are
overestimates preferable to underestimates? Should different answers be
given under alternative conditions?

To create effective model-eliciting problems, one of the key tricks
is to ask a real question thatis neither too vague nor too specific. Productive
goals for model-eliciting problems should be similar to productive goals for
businesses or government or adult-level, on-the-job projects. They should
clarify how you will know when you are done, and when you are expected to
be done (date and deliverable). The criteria for evaluating the quality of
work should also be clearly understood. Contrast President Kennedy's goal
to “put an American on the moon by 1970” to President Bush’s goal of
“making American students firstin the world in mathematics and science by
the year 2000.” In the first case, the criteria for success are clear, whilein the
latter, they are not.

HOW MATHEMATICAL MODELS DIFFER FROM OTHER MATHEMATICAL SYSTEMS

In the research literature on mathematics learning, problem
solving, and instruction, one issue that strongly influences both the obser-
vations that are made and the conclusions that are reached has to do with
the “grain size” and the type of objects under investigation. For example:

s If mathematics is thought of as (nothing more than) a collec-
tion of condition-action rules, then thinking tends to be
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equated with information processing, and learners tend to be
treated as information processing units. Also, distinctions
between experts and novices tend to be characterized in terms
of the presence or absence of specific factual and procedural
rules, and students’ misconceptions are often interpreted as
being similar to “buggy” computer programs (see, for example,
Brown and Van Lehn, 1980).

If mathematics is thought of as being based on a relatively small
number of general cognitive structures and reasoning patterns,
then the most important aspects of thinking tend to focus on
the construction and adaptation of these structures (see, for
example, Piaget and Beth, 1965; Steffe, Cobb, and von
Glasersfeld, 1988) and misconceptions tend to be explained by
determining which of several alternative conceptual systems
students are using.

If attention focuses on entire conceptual fields, such as those
associated with multiplicative relationships, or additive relation-
ships, or exponential relationships (see, for example,
Vergnaud, 1988), then attention tends to focus on meanings
that are derived from organized systems of ideas rather than
being derived from additive combinations of isolated ideas or
procedures.

This chapter is based on the notion that to study the nature of
students’ mathematical knowledge (plus the und erstandings and abilities
that are needed to use this knowledge in everyday situations), the most
appropriate unit of analysis is at the level of mathematical models rather
than at the level of (i) information processing rules, (ii) general Piagetian-
style cognitive structures, or (jii) entire conceptual fields.

Mathematical models are closely linked to each of these three
perspectives, yet they are also distinct from each. For example, a collecticn
of factual and procedural rules is associated with any given mathematical
model, yet understanding the model means far more than simply learning
a list of isolated rules. Also, because real-life problems seldom fall into neat
and tidy disciplinary categories, the mathematical models that students
construct generally emphasize the kind of integrated knowledge that is
emphasized by those who focus on conceptual fields (see, for example,
Vergnaud, 1988). Finally, all mathematical models are complete, function-
ing mathematical systems (of the type referred to in Table 2) and all
mathematical systems are potential models for describing and explaining
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real or possible worlds. Yet in real-life situations, the models that students
construct tend to be somewhat different from both general cognitive
structures (of the type described by Piaget) and general mathematical
structures (as typically described in mathematics textbooks).

How are the cognitive/mathematical models that have been
described in this chapter different from other (more “pure”) types of
mathematical systems? Our answer is that mathematical models are situated
mathematical systems. On the one hand, they provide powerful structural
metaphors for describing, constructing, explaining, predicting, and con-
trolling reallife situations. On the other hand, they can also be explored
witliout reference to external events.

Whereas pure mathematical systems are abstractions that are
distinct from the notation systems in which they are embedded—as well as
being independent of the ~ind of any particular human——mathematical
models do not function in the abstract. That is, in nontrivial situations,
mathematical models are always embedded in representational systems
(written symbols, spoken language, diagrams or pictures, concrete or
manipulatable materials, or real-life prototype experiences); and, for a
given student, potential models (thatis, mathematical systems) do notreally
become actualized until they are used to model some external phenom-
enon. Furthermore, in the minds of the humans who construct them, the

meanings of mathematical models are always influenced by the purposes for
which they are constructed and by situations in which they are constructed.
Therefore, the kind of mathematical models emphasized in this chapter are
usually more concrete and more closely linked to students’ specific prob-
lem-solving experiences than the general systems typically described in
mathematics textbooks.

Table 2

Basic Mathematical Systems Underlying Ideas in Precollege Textbooks

Representations, Notations,
Elements Relations | Operations | Definitions, Computations,
and Transformations

simple counts =,#,4,> +-%, ) base ten numeration
composite counts =#,<,> +,= X 24 eggs => 2 dozen
simple measures =£,4,> +,= X+ feet, inches, centimeters
derived measures =#,<,> +,= %+ 7¢cm => .7dm = .07 m
very large/small numbers |=,=,2,<,> |~ +~x* scientific notation
signed numbers =#,<,> +- %, -n, Inl, %

coordinates (locations) Ipql, @ |+-x-r lpgi

fractions =#,4,> +=%, ] 2/3

Q

ERIC

PAFullToxt Provided by ERIC




decimals & percents =#,<,> X %, $
ratios =z,,<,> | ab,

rates =#,<,> +,=, X+ miles-per-hour

vectors =,22,4> | 0%+ ~x+ |@b)
matrices & operators =g, <,> |00 0 labl

‘real numbers sz, | Mmxsr Ine

‘complex numbers == #<> | Mboxa
‘probabilities (measures of |=,=#,<,> | *+-x+ |P(A), P(A/B), P(A)
the frequency of events)

“statistics (measures of sets | =,=#,<,> |+~x+ graphs,
of data)
sets (& elements of sets) = U, N, E, Q.9

‘logical propositions =>,-> Ay, v, 6,3 .., 3

programming commands | =>~> o V9.3 5ot 3

*shapes in a plane symmetric [\, M, £.L | constructions, reflections,
N translations, expansions
shapes in 2-D space symmetric, |\ M, constructions, reflections,
=, -~ = translations, expansions
algebraic expressions =#,m N X substitute, simplify,
commute, distribute, etc
algebraic equations +,- X4 transform

algebraic functions o, *, +,.-,%,+ | simplify

trigonometric expressions N+ X+ SIN, COS, TAN
.trigonometric_functions 0, *, +,~x,+ | simplify

exponential & logarithmic Aamxt |LOG e

expressions

exponential & logarithmic compose, | simplify
functions Xt

sequences FimXt o0 —>,

series +oX Eleo,—>, ...
continuously changing =X, dy/ox.A
quantities (derivatives)

_accumulating quantities X [,z
(integrals)

In Table 2, which gives basic mathematical systems, all of the
mathematical systems (including the kind of mathematical models empha-
sized in this chapter) consist of three kinds of entities: (i) elements, (ii)
relations among elements, and (iii) operations on elements. Consequently,
one convenient way to distinguish one mathematical system from another
is simply to name the elements, for example, simple counts, simple mea-
sures, ratios, rates, signed numbers, and so on. Another way to distinguish
one mathematical system from another is to list the factual and procedural
rules that govern the behavior of elements within the system. Nonetheless,
the real mathematical objects are neither the elements nor the represent-
ations, notations, definitions, computations, and transformations that de-
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scribe their behaviors. The real mathematical objects are the underlying
patterns that the symbol systems describe. Doing mathematics means inves-
figating the structural properties associated with these patterns (or models)
and constructing and adapting these paiterns (or models) for a variety of
situations and purposes.

The mathematical systems described in Table 2 tend to be both too
large and too small to serve as the proper unit of analysis for most situations
in learning and instruction. They are too small, for example, because
nontrivial real-life problems seldom fall within neat disciplinary topic areas.
Therefore, to describe or explain most realife problems, it is usually
necessary to constructa model thatis based on combinations and adaptations
of several pure mathematical systems. The systems are too large, because it is
onlyatan extremelyadvanced stage of conceptual development thatstudents
become able to think in flexible ways using conceptual models that are as
large and complex as (for example) the system of rational numbers. In
general, the past decade of cognitive science research has revealed that
mathematics learning and problem solving are far more situated and piece-
meal than earlier researchers had recognized (Greeno, 1988).

Finally, these systems are sometimes simultan eously too large and
too small, because, when students and educators are forced to work prema-
turely with mathematical systems that are as large and complex as those in

the table, they often lose sight of the forest because of all of the trees. In
particular, they tend tolose sight of the underlying patterns (ormodels) that
are intended to be described, and instead focus on simply knowing and
executing isolated factual/precedural rules within the system.

From the point of view of mathematics learning and instruction,
substantial effort must be made to focus on underlying systems that are
sufficiently small and concrete so that students do not lose sight of the
underlying systems-as-a-whole, while, at the same time keeping these systems
sufficiently large to have impressive power, utility, and generalizability. But,
how large is too large? And how general is too general? The answers depend
on the level of development of individual students. In principle, a student
mightsomedayreach alevel of developmentwkhen virtually all of the systems
referred to in the table have been integrated into a single supersystem. For
example, elements in one system (for example, the natural numbers) are
often embedded within another system (for example, fractions, or signed
numbers) whichare in turn included within still other systems (for example,
real numbers, complex numbers, vectors, or matrices). On the other hand,
as this process of subsumption takes place, the meaning of symbols such as
+and = often differ considerably from one level to another (or from one
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situation to another), so that, if a single integrated system could ever be said
to exist in the mind of a given student, this system would have to involve
notions such as “levels and types of equivalence” and “levels and types of
combination” which apply under different conditions or in different situa-
tions.

SUMMARY

To close this chapter, we will review answers to some of the main
questions that were posed at the beginning of the chapter.

Question: What are the most important objectives that students
should learn (and that assessment instruments should measure) in math-
ematics instruction?

Answer: According to the point of view that was adopted in this
chapter, the mostimportantgoals of modern mathematics education are to
help students construct models that provide powerful conceptual/proce-
dural amplifiers for making sense of their increasingly complex worlds of
experience. For example, within most mathematics courses, or atany given
grade level, there tend to be no more than ten to twenty basic models that
underlie nearly all of the specific concepts and procedures thatstudents are
expected to learn. It is the development of these models that should be
emphasized in both assessment and instruction. ’

Unlike earlier periods when students were expected to demon-
strate their knowledge and ability by showing how many facts and skills they
knew, increasingly, the main mark of intelligence is considered to involve
the ability to analyze, manipulate, synthesize, and critically interpret infor-
mation in the interest of real-life problem solving. Specific factsand skills are
associated with each of the preceding models, but these models themselves
are not merely condition-action rules. They are complete, functioning,
systems-as-a-whole whose properties are not simply derived from their parts
and whose purposes are not simply to provide rules for getting from givens
to goals during the process of answering questions posed by others. Instead,
their purposes usually involve describing, explaining, predicting, manip-
ulating, and controlling real or possible worlds of experience.

Question: What types of activities are particularly promising for
assessing the preceding dimensions of understanding?

Answer: For a given student, to assess the extent to which a given
model has been constructed (or to assess the level of development of the
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model), one kind of activity that has proven to be especially usefulisamodel-
eliciting activity in which students go beyond simply giving an answer to
construct a response using available information, objects, tools, and proce-
dures. Often, these constructed response activities tend to be quite similar
to activities involving the construction of geometric figures. For example,
in the Math Placement Problem described earlier, teachers began to
constructaresponse by explicitly selecting, filtering, coding, and organizing
relevant data within a s sreadsheet; next they recoded and reorganized the
information in avariety of ways; then they constructed graphsand reasoning
paradigms to support their constructed decision-making strategy. Finally,
they looked for other structurally similar problem-solving situations in
which the model they had constructed might provide insightful explana-
tions, predictions, or interventions. Consequently, to evaluate the quality of
agiven person’sresponse to the Math Placement Problem, it is necessary to
evaluate the model that was constructed, and the constructior: processitself,
in addition to evaluating isolated answers or specific decisions that were
based on the model.

Question: How can the construction of significant models be
facilitated?

Answer: For fields in which the most importantgoals of instruction
focus on the constru- tion of models for describing, predicting, and control-
ling the behavior of complex systems, case studies are often used as model-
eliciting activities to help students develop powerful structural metaphors to
make sense of actual or anticipated worlds of experience. For example, in
business schools, this development process often involves the following
three phases:

8 The model-development phase: Using a variety of conceptual
frameworks and technology-based tools, students construct
models to describe, explain, manipulate, and predict the
behavior of structurally rich systems. That is, they are case
studies that provide prototypes (or structural metaphors) for
interpreting other important problem-solving situations.

The model exploration phase: Models that have been constructed
are investigated for their own sake (as in a pure math activities)
to extend their power and utility by focusing on underlying
patterns and regularities.

The model application phase: Models that have been refined and
elaborated are applied to new problem-solving situations which
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could not have been dealt with adequately in the absence of the
newly constructed model. That is, students actively look for new
situations that can be described or explained using the model
they have constructed.

After these three phases, similarities and differences are often
explored comparing the original problem, the pure math model, and the
final application. This process is depicted in Figure 5.

Figure 5. Three Stages In A Modeling Approach To Mathematics Instruction

activity
Modal-eliciting — > Application
case study activity

The preceding modeling approach to instruction is similar to
instructional approaches that Dienes (1957) advocated for use in mathemat-
ics laboratories. As Figure 6 suggests, Dienes’ instructional techniques fo-
cused on use of concrete manipulatable materials which served as embodi-
ments of targeted mathematical systems. That is, students explored two or
three sets of structurally rich materials, then they investigated similaritiesand
differences among structurally isomorphic activities with these materials.

Figure 6. Dienes’ Muitiple Embodimant Approach To Mathamatics Instruction

Embodiment #1 _— Embodiment #3

The preceding two approaches to instruction are clearly quite
similar. For example, both focus on mathematical systems-as-a-whole; both
emphasize the use of concrete materials; both concentrate on mathematical
systems that provide conceptual foundations for the mostimportant under-
standings and processes that are priorities for children to learn. The main
difference between the two approaches is that Dienes’ principles focus on
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pure mathematicsactivities (in which the symbols are concrete objectsrather
than abstract notation), whereas two of the three stages of our modeling
approach focus on applied mathematics acévities (which are explicitly based
on children’s’ reallife experiences), even though all three stages are aimed
at demonstrating the power of pure mathematical activities.

Our modeling approach to instruction is deliberately consistent
with the way modern mathematicians think about their own activities in
mathematics and mathematical modeling. Also, it was explicitly created to
be consistent with three of the most basic principles of modern cognitive
science, namely, (i) humans interpret their experiences by mapping them
tointernal models, (ii) these internal models must be constructed, and (iii)
constructed models resultin situated knowledge thatis gradually extended
and decontextnalized to interpret other structurally similar situations.
Moreover, our modeling approach to instruction is also consistent with a
constructivist philosophy about how human knowledge develops.
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Toward an
Assessment
Framework for
School Mathematics

Gerald A. Goldin

INTRODUCTION

There is increasing recognition that the methods
currently used most widely by schools for assessing student mathematics
achievement are having a substantial negative impact on meaningful learn-
ing. Often itis assumed that the situation can be improved by replacing tests
that measure low-level skills, computational algorithms, and routine prob-
lem-solving with new instruments containing more sophisticated, nonroutine
problems. Ideally, with an appropriate pool of test items, itis suggested that
“teaching toward the test” would no longer compromise the goals of the
assessment and that a student’s successful performance would unquestion-
ably reflect a deep mathematical understancing.

This chapter argues against this approach and stresses the need
for a sound cognitive modelas the basis of a framework for assessing meaning-
ful mathematics learning and understanding in schools. Exploring in detail
a few mathematical assessment items illustrates how the outcomes of any
assessment—traditional or nontraditional--depend on the teacher’s prior
understanding of what is being assessed. Particular cognitive processes can-
notbe identified with a mathematics problem that elicits them, nor can they
be assumed to be necessary to solve the problem. It follows that reform of
assessment involves much more than the creation of newinstruments. What
is needed is not only an appropriate cognitive model, but also an under-
standing among teachers, school administrators, students, and the general




Toward an Assessment Framework for School Mathematics

public of mathematical processes as well as content, and of how new methods
of assessment are intended to address these processes.

Based on the examples explored here, we shall discuss an assess-
mentmodel entailing several different kinds of broadly applicable cognitive
representational systems drawn from an earlier model for problem-solving
competence (Goldin 1987, 1988) togetherwith domain-specific capabilities
organized into conceptual schemes.

Background

The past fifteen years have seen some substantial changes in the
intellectual leadership of mathematics education in the United States.
Among other positive developments has been a transformation in the
prevailing educational perspective on what it means to learn and to under-
stand mathematics.

By the mid-1970s, a behaviorist view had come to predominate in
school mathematics. Influenced by the claims of behavioral psychologists to
scientific rigor, some educators became advocates for the position that
vocabulary purporting to describe students’ mental states or cognitive
processes should be discarded from the lexicon (Mager, 1962; Sund and
Picard, 1972). Many schools rewrote their curricular goals accordingly.
Understandingin mathematics (and in other school subjects) became virtu-
ally identified with performance—or, more precisely, with the student’s achieve-
ment of sets of performance objectives, most often expressed as the reliable
and rapid attainment of correct answers to mathematical problems of
various types. This view might not have become so prevalent had it not had,
asa source of wide political support, its extraordinary compatibility with the
“back to basics” reaction against the “new mathematics” movement of the
1960s (a movement which itself had had mixed results in fostering math-
ematical understanding in the majority of students). The behavioral objec-
tives approach lent itself well to reliance on standardized skills tests in
mathematics, both to define the goals of instruction (basic skills), and to
provide the assessment of success in achieving those goals.

The results on balance have been quite negative, even by perfor-
mance objective measures. Not only did insightful mathematics learning
virtually disappear from many classrooms, but a substantial number of
children did not acquire or retain even the skills they were taught as rote
procedures. Today, as a partial consequence, our society confronts a real
crisis in mathematics teaching and learning. But the prevailing view of
mathematical understanding has changed. Meaningful mathematical un-

70




derstanding is now widely secn by many educators (as well as cognitive
theorists) as entailing a2 complex system of elaborately constructed cogni-
tions, developed over time, involving not only overt concepts and proce-
dures but considerable tacit knowledge that can be brought to bdar without
the conscious awareness of the teacher or the student (for example, Lesh
and Landau, 1983; Davis, 1984).

Obviously the current thinking requires substantial, fundamental
revision in several aspects of mathematics education, including not only the
objectives of instruction and the preparation of teachers, but also our
assessment techniques—at least if we desire to observe in some systematic
way the nature of the student understandings that are the outcomes of
learning. The objectives of mathematics education have been addressed in
some detail in a number of recent public documents (for example, NCTM,
1989; NRC, 1989). Attention has also been given to issues in mathematics
teacher development through national publications (NCTM, 1990; Davis,
Maher, Noddings, 1990), and through many innovative regional institutes
for teachers. To date, in 1992, there have been only isolated and preliminary
efforts toward the fundamental reform of assessment techniques.

DEVELOPING NEW ASSESSMENT TECHNIQUES: OPPORTUNITIES AND DANGERS

. Tt can of course be maintained that the assessment of a student’s
understanding is fundamentally a matter of qualitative judgment based on
long-term, personal interaction and is therefore best accomplished by the
individual classroom teacher. Perhaps it is a mistake to try to assess under-
standing systematically or to develop a framework for doing so. This
possibility should not be dismissed out of hand—while leaving assessment to
the classroom teacher seemsaradical ideain the United States, itisgenerally
the method of choice in, for example, the Federal Republic of Germany.
There are, however, some strong arguments for taking the present oppor-
tunity to develop new instruments and modes of assessment, provided the
appropriate cognitive and teacher development foundations are laid.

First, with the setting of goals for mathematics education tran-
scending mere computational speed and accuracy, a well-designed system
for measuring understanding descriptively could be a useful resource. It
could in principle not only provide feedback to socicty as to how well
educational institutions are achieving their more ambitious objectives, but
also inform and consequcntly enhance the classroom teacher’s judgments
—enabling the teacher to build on individdal students’ strengths while
addressing cognitive obstacles more effectively.
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Second, new assessment frameworks may permit us to replace our
current system of tests with 2 much better alternative. This is an urgent
necessily for real mathematics education reform. To the degree that present
assessment techniques rely on routine computational, algorithmic, or word
problem tasks, or can easily be misconstrued as doing so, they continue to
function as powerful inhibitors of teaching for mathematical understan ding
in schools. School boards, administrators, and teachers are reluctant to
devote class time to conceptual understanding, exploratory activity, con-
struction of mathematical meanings, or mathematical invention, because
they (often correctly) perceive these activities as untested and irrelevant to
the test scores thatare the short-term bottom line in mathematical achieve-
ment. In the long run, of course, the damage shows up in many forms,
including low scores even on the standard test items, because students have
not developed adequate conceptual foundations.

An immediate example is provided by some of the K-8 national
mathematics testing series released in the United States in 1991. As a
consequence of the current movement toward mathematics education
reform, these now include more complex, nonroutine topics and problems,
and they develop some important mathematical ideas both computationally
and conceptually. While textbook publishers deserve their share of past
responsibility for overemphasizing rote computation in mathematics, the
1991 series offer a potentially significant opportunity for change at the
classroom level. Unfortunately, experience suggests that, in many schools,
despite national recommendations to the contrary, conceptually based
activities will be culled from the curriculum and treated as “enrichment”—
for occasional use only, with selected students—as if the understanding and
doing of mathematics (as opposed to the rote learning of skills) were not
central to our educational goals, but merely an optional add-on. This
anticipated outcome is made more likely by the fact that, due to traditional
format restrictions, complex problem strategies and conceptual under-
standing are by and large deemphasized in textbook chapter and unit tests,
thatare th.: onlyimmediately provided assessment methods in the K-8 series.
Furthermore, items included on textbook tests that mightbe considered as
addressing higher-level or deeper un derstanding are easily misconstrued as
intending to measure lower-level skills or memorized terminology. An
assessment framework accessible to teachers could be justwhatisneeded to
overcome such difficulties.

Buta note of caution must also be sounded. There are dangers as
well as opportunities in developing new instruments for assessment that, in
practical use, can be harmfui as well as helpful. Assessment instruments must
never substitute for the teacher’s cum understanding of mathematics, nor for the




teacher's oun model of student understanding. A teacher who does not ad-
equately comprehend a mathematical idea, or have a good cognitive
model of whatit means forastudentto understand a mathematical concept,
will not be able to compensate successfully by teaching toward the test,
especially when the test is a nontraditional instrument designed to assess
higher-order or deeper understandings. And teachers or administrators
who do have such understandings must be able to use the information
gained from new instruments to enhance and supplement their perspec-
tives, not to replace them.

Having agreed atlast to attend to the inner cognitions of students,
mathematics educators must recognize that the assessment is not the set of
goals—it is only a means of gathering information related to, but different
from, the set of goals. It would be a poor doctor who thought that the
objectives of medical treatment were mainly to obtain satisfactory readings
on descriptive_instruments—thermometers, stethoscopes, and so on—
without a physiological model that distinguished health from disease. Such
a practitioner, seeking only to alleviate the symptoms of illness, might
succeed in the short run in relieving symptoms, but would fail spectacularly
in achieving healthy patients. In developing an assessment framework for
mathematical understanding, this medical analogy can help ustake account
of the following general principle: No matter how sophisticated the mathematical
problems we may pose (so that they seem to require higher-level thinking,
strategic problem solving, and/or conceptual understanding for their
solution), it is conceivable to devise—and to teach—practical, rule-based,
noninsightful procedures for solving them. Under these conditions successful
performance does not reflect understanding. Indeed, in such circum-
stances the purpose of the assessment is defeated just as surely as lowering
a paticnt’s fever through aspirin, or an ice bath, prior to a medical exami-
nation would defeat the purpose of taking her temperature. In schools, such
misuses of assessment are most likely to occur when educators do not
themselves understand what is actually being assessed, or why. These are
major dangers in developing a new assessment framework, and they must be
carefully avoided.

INGREDIENTS OF AN ASSESSMENT FRAMEW ORK

The following are some of the perspectives for which I wish to
argue in approaching the issue of a useful assessment framework:

u Assessment that is no longer limited to discrete, low-level
mathematical skills requires not only an idealized, structured
model for a mathematical content domain, but a sound cogni-
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tive model for describing the capabilities to be assessed. While
such models can become very complex, it is important that the
resulting assessment framework be simple enough to be useful
at the same time that it is sufficiently detailed to reflect what is
involved in doing the kind of mathematics we want to encour-

age.

A useful cognitive model for this purpose can be developed
based on two dimensions, which cut across each other: (i)
mathematical conceptual schemes, reflecting the organization
of domain-specific cognitive capabilities, and (ii) several
different kinds of cognitive representational systems, which
characterize capabilities for broader problem solving and
transfer to novel situations. A framework for assessment based
on such a model can be 7eflective in taking account of the
student’s analysis of his or her own cognitive strategies. It also
provides the basis for a more descriptive assessment, so that we
can obtain useful profiles of a student’s mathematical develop-
ment as we evaluate insightful problem solving and depth of
understanding.

I shall also try to illustrate these ideas with a few examples.

The Need for an Explicit Cognitive Model

There are several reasons why it is important to set forth a cognitive
model as a prerequisite to creating an assessment framework. The first, as
mentioned above, is the need to prevent the measure of achievement— the
test or the assessment framework—from being identified or taken as synony-
mous with the central goals of the curriculum. In part this happens because
we have no other independent characterization of those goals. To be specific,
consider a nonstandard, exploratory problem about egg timers (Problem 1).

Problem 1. You have two egg-timers, in which
fine sand runs from one compartment to
another in a fixed interval of tims (see
illustration). it takes exactly 4 minutes for the
sand to run through one timer, and 7 minutes
for it to run through the other.

What other infervals can be timed? Can you

use these timers to measure an interval of

exactly one minute? Explore ditferent pairs of
4-minwte timer 7-minute timer egg-limers.

7 ';1




Let usask what the purpose would be of such a problem activity in a teaching
lesson. Whatmightwe be assessing if this problem were used in an individual
interview, as a group problem-solving activity, within a student project, or on
a test?

As mathematics educators interested in higher-order and deeper
understandings, we might expectthatsuch a problemisintended to develop
or assess a student’s ability and willingness to do at least some of the
following (listed in no particular order):

Explore a new concrete situation.

Try a number of specific procedures.

Visualize the outcomes of particular sequences.

Organize and record the outcomes of trials in a useful way.

Make appropriate use of addition and subtraction of numbers,

in the specific context of comparing and concatenating inter-

vals of time.

Modify the order of steps in particular sequences.

Make conjectures from special cases.

Investigate a conjecture systematically.

Put together a strategy for systematic study of the problem.

Arrive at a mathematical generalization based, in this case

(tacitly or explicitly), on the fact that the numbers 4 and 7 are

relatively prime (involving structures of multiplication and

division).

Generalize spontaneously from one problem to a family of
related problems.

Try to understand why a conjecture might be true (intuitive
precursor of the idea of mathematical proof).

Proceed with an investigation without fear of being wrong.

M
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u Be influenced by the problem’s internal logic, rather than by
the perceived expectations of the teacher.

u Participate constructively in group problem-solving interactions
(depending on the mode in which the problem is addressed).

u Have fun with such an exploration, and so on.

Depending on which cognitive objectives are highlighted, the
context or mode of presentation of the problem may change. A list such as
the above is based on at least a tacit model for the kinds of things that
constitute mathematical understanding or sophistication. Without such a
model, a teacher even with the best of intentions in preparing students to
solve such a problem during an assessment, can do many things that defeat
the preceding objectives. For example, the teacher may

s show the student a number of ways to use the timers in se-
quence (so that there is no need to explore spontaneously),

demonstrate a number of specific procedures (so that the
student tries them only in imitation of the teacher),

decide the outcomes of particular sequences for the students
(so that the students need not anticipate, or visualize, or reason
to consequences),

set up a chart for the students to record the outcomes of trials

(so that the students themselves only enter numbers), and so on,
until finaliy, the students have no sense of fun or accomplish-
ment in the problem-solving, and see only a routinized method
for solving a class of “egg-timer problems” along with other
problem types such as “money probiems,” “rate problems,” and
so on. Perhaps a student, having been thus prepared, will solve
the problem correctly during the assessment—but what is
measured will be recali of a demonstrated, rule-based procedure -
rather than any of the desired cognitive processes.

A second reason to have a cognitive model in advance of develop-
ing an assessment framework is to be able to discuss the goals of instruction
(and consequently the goals of the assessment) explicitly, and to the extent
feasible to decide these goals consciously rather than tacitly. For example,
we have heard much about the need for reallife problem solving in the
curriculum, as though the immediacy and verisimilitude of application were




the most important criteria for whatshould be taught. Butare they? No one
doubts that one goal of mathemat: s education should be to develop the
student’s ability to treat real situations mathematically, but is it justified to
declare this the most important or cognitively valuable goal? Might not an
exclusive focus on reallife mathematics problems preclude the student’s
achievement of mathematical understanding, of abstraction from specific
situations, of transfer to new situations, or of insight into the beauty and
simplicity of mathematicalreasoning? Orare these envisioned as automatic,
but incidental consequences of an emphasis on real-life mathematics? The
new textbooks and theiraccompanying tests, even as they have increased the
complexity and conceptual depth of their treatments, have also sought to
place more emphasis on realistic problems in realistic contexts—but these
may or may not encompass what we mean by higher-level or deeper
understanding. Having a sound cognitive model as the foundation of an
assessment framework can help us avoid oversimplified interpretations of
what it means to do mathematics.

A third reason for a cognitive model is that new approaches to
assessment can now make use of new technology—for example, computer
environments can be designed for conducting individualized assessments,
with built-in elaborate contingencies based on student responses. The fact
that such schemes require major commitments to structured programs
suggests that it would be a good idea to invest some time in the design
elements, to determine just what it is we want to assess before we set about
building computer-based assessment systems. An adequate, accessible cog-
nitive model would seem to be a prerequisite. This is especially important
because the American public now tends to have little conceptual under-
standing of mathematics and to have a highly procedural/algorithmic
orientation toward what it means to do mathematics. Parents and policy-
makers may tend to place their faith in new assessment schemes merely
because they are high-tech, and again—without efforts to the contrary—we

may see the assessment procedure defining by default the cognitive goals of
instruction.

In short, we need a good way to characterize desizable cognitions
in mathematics, a characterization that captures the essential cognitions
that we as mathematicians and educators hope to develop in our students.
Then, and only then, should we seek to develop an assessment framework
that describes the extent to which these cognitions have actually been
developed. At the classroom level, we need teachers who understand what
the goals of instruction are, why they are what they are, and how certain

kinds of assessment items are expected to measure particular instructional
goals.
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TRADITIONAL AND NONTRADITIONAL ASSESSMENT ITEMS

To make mere concrete what we mean by a cognitive model, lei us
next consider some further assessment items, comparing a traditional with
a nontraditional question. Again, most of the analysis that follows is inde-
pendent of whether the questions are posed on standardized tests, occur
within student projects, are presented in individual interviews, or form the
basis of group problem-solving activities.

"/nderstanding, Traditionally Assessed

Problem 2is a routine story problem of a type that, in one form or
another, mighthave been given to middle school students atany time during
the past century to assess their understanding of school mathematics. It is
expected that (with pencil and paper) the student will calculate the two
products [4 x $3.79 and 3 x $4.85], subtract the latter resuit [$14.55] from
the former {$15.16], and cbtain the answer [$.611].

Problem 2. Mixed nuts cost $3.79 per pound, while cashews cost $4.85 per pound. How
much wiore does a 4-pound bag of mixed nuts cost than a 3-pound bag of cashews?

On the surface, such an item does appear to assess the student’s
understanding of multiplication and subtraction in a real-life context, as
well as his or her ability to perform and make use of routine arithmetic
computations. Undoubtedly this belief accounts for such problems having
survived generations of mathematics education reforms. When we look
more deeply, though, we cansee that this characterization of whatis assessed
istoo simple. On the one hand, solving the problem insightfully may involve,
for example, (i) the student’s having some kind of broad heuristic strategy
(which some might call “metacognitive”) for structuring such story prob-
lems, including the ability to extract the wanted and given information,
identify the goal information, and so on; (ii) the student’s having the ability
to interpret the problem statement semantically, to visualize the problem
elementsin th. cultural context of purchases bzing 1.2ade; (iii) the student’s
being able to regard specific aspects of the problem situation (not merely
the words) as calling for certain arithmetic operations, so that the “cost of
the mixed nuts” can be obtained by multiplication, the “cost of the cashews”
by a second multiplication, and “how much morz” by subtraction of the
latter product from the former; (iv) the student’s not only having the ability
to carry out the desired computations correctly, using standard algorithms,
but being able to monitor the meaning of the computations and the
reasonableness of the results through estimation and contextual reasoning;
so that (for instance) an answer of $1,455% would immediately be deemed
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inappropriate for the purchase of a bag of cashew nuts; and (v) the student’s
being able to organize the information, keeping track of goals and subgoals
along the way, so that (for example) after each arithmetic operation is
performed, the student knows or can determine how the numerical answer
relates to the problem’s goal structure and to which semantic elémentofthe
problem situation it corresponds.

These procedures are, in and of themselves, sufficiently compli-
cated so that, if we accept the preceding as a partial description or “model”
of the needed problem-solving processes, it must be acknowledged that the
problem doesrequire higher-order cognitive activity or deeper understand-
ing. In fact, many students experience considerable difficulty with such
problems, suggesting the complexity of the processes they doin factinvolve.
However, despite the complexity of the requisite cognitive processes in this
description, there are some deeply unsatisfactory characteristics of such
problems used as assessment items, which we now mention.

First, many would point out that this task is not exactly the real-life,
practical problem it pretends to be. In an actual pricing situation, it is more
probable that an estimated answer rather than an exact answer would be
called for and calculated. Were a precise answer needed, it is likely that a
calculator would be at hand to obtain it more easily than through a
conventional calculation. In this case it would be necessary (in some states
of the United States) to consider additional complications such as the sales
tax, Furthermore, we are not told why the answer is needed, and itis difficult
to conjecture areal-life situation in which the precise difference in these two
prices would be the problem goal.

Second, the foregoing partial description of procedures suggests
numerousimportant, tacitunderstandings which may or may notbe brought
to bear by the student. These are addressed only incidentally by the
problem. Learning or assessment based solely on the problem-as-pased does not tell
us what failed and what succeeded. It might be well to make some of the
possibilities overt. For example, the problem anticipates thata 4-pound bag
of mixed nuts costs more than a 3-pound bag of cashews. Does the student
(i) take this for granted (and simply subtract the smaller product from the
larger, or the second product from the first), or (ii) monitor the calculation
and verify when the ime comes that the cashewsreally cost less, or (iii) check
this assumption by estimation at the outset? What are the consequences of
each possibility? If (iii) occurs, for instance, the student might obtain 4 x $4
=$16while 3 x $5 = $15, and conclude thatindeed the mixed nuts costmore,
but not a lot more; while a sophisticated student might even note that since
the cost-per-pound of the mixed nuts was rounded upward in this estimation
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by more than the cost-per-pound of the cashews, one should not have total
confidence in the outcome of the estimate. This is just one of the large
number of tacit capabilities which, taken together, may characterize under-
standing of the mathematics of the task, but which success on the task itself
does not assess. Within certain modes of learning or assessment, such as
tutoring or individual interviews, it may actually be possible to measure such
outcomes; but it is necessary, then, to inroduce a questioning or interview
procedure that seeks to elicit them.

Third, and perhaps most important, there is the entrenched
expectation that the problemis “routine.” This term has two distinguishable
meanings. In the sense that problems like this one are frequently used for
assessment and are standard content in most textbooks, to be routine is not
anegative characteristic—after all, ifideal, nonroutine problems were to be
substituted in textbooks and assessment instruments, they would quickly
become routine in this sense. But there is a more intrinsic sense of routine
that pertains to this problem—namely, thz expectation that its solution involves
only the straightforward application of previously learned computational rules, in
semantic situations where there is a standard one-to-one correspondence between the
called-for computation and the situational entity (see below). There are no new
mathematical constructions anticipated here and no difficult decisions are
anticipated as to the operations thatare called for or what they mean. On the
contrary, the implication of routine is that any such constructions or
difficult decisions occurred longago and have become automatic; if not, this

would bespeak a deficiency in the student’s preparation to solve the
problem,

A Tacit Model

Because of the routine nature of Problem 2, it is thus possible to
bypass much of its cognitive complexity—and some teachersand books tend
to do so. For example, the problem can be addressed without developing a
mature concept of the intensive quantity “cost per pound,” if the student is
merely taught to interpret the phrase “4 pounds at $3.79 per pound” as a
purely syntactic instruction to multiply. [The general syntactic form here is
“x A’s aty B's per A,” where x and y are numbers and A and B are nouns
describing objects, units of measurement (including money), and so on.]
We see this bypass attempt at its worst in the so-called key words approach
to story problems—an approach that has often been deplored but that
survives in many classrooms. It survives because, unfortunately, it works to
obtain answers to the routine problems most often used in classrooms. A
tacit (and .iighly inadequate) cognitive model underlying such approaches
to the problem is illustrated in Figure 1.’
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Figure 1. A tacit, naive The compartments with rounded corners
sognitive model. in Figure 1 refer to external configurations (the
verbal problemsstatement; formal expressionsor equa-

tions generated by the solver; the written answer to

the problem). The rectangular boxes stand for inter-

nal systems of representation (verbal processing, in-
volving reading the problem and identifying relevant
syntactic expressions; formal/symbolic processing,
involving structured arithmetical computations). The
ovals refer to internal processes that interface be-
tween the internal systems and the external configu-
rations, or between two internal systems. The strategy
depicted is sequential—read the problem, translate
each part of the problem statement into an arithmeti-
Fomal symbotic cal procedure (‘ﬁvord_s” to “s.ymbols”), and then per-

expressions form the necessary arithmetic.

By making this frequently held tacit model
explicitand detailed, it becomes apparent how, with-
outamore adequate cognitive model to the contrary,
many teachers of mathematics would plausibly see

what is being assessed here as the conversion of word

° problemsabout cost to formulas (translation of modes
of external representation), and the performance of

computations, rather than the understanding ¢«fmath-

ematical concepts, heuristics, problem-solving strate-
gies, or applications. This is another instance of the
above-mentioned general principle that no matter

how sophisticated the problem, one can devise a noninsightful procedure
for solving it.

For these reasons the exclusive focus on such problems as the
epitome of what it means to do mathematics at the middle school level is a

very bad idea, despite the potential complexity of the cognitions that might
be brought to bear.

Cemparison with Nontraditional Assessment items

When a nontraditional problem (Problem 3, for example) is
introduced in the context of assessment, mathematics educators frequently
respond with approval or disapproval, making some implicit judgments
about the item’s validity and at the same time projecting their assumptions
about whatitwould take to solve the problem. The purposc of the examples
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that follow is not to present good or bad items, but to make some of those
assumptions explicit——that is, to discuss what might be measured by certzin
kinds of nonroutine items, compared to routine assessment items such as
Problem 2. We shall see that the cognitions to be assessed are very sensitive
to the conditions of the assessment. Withouta clear characterization of what
we want to measure, there is a great deal of ambiguity. We shali see that the
question to pose first is not, “What does the problem assess?” but “What are
we {ryingto assess through the problem?” The answer is not obvious from the
problem itself.

Problem 3. Let the symbol @ sfand for the average or mean of two numbers. For
sxample, we shail wrile 6 @ 8 = 7, because 7 is the mean of the pair 6 and 8. (s the
operalion @ commutative? Is it associative? Explain why or why not.

One possibility, in line with the recommendations of many educa-
tors, is that through Problem 3 (and others like it), one might assess
conceptual undersianding of commutativity and associativity by asking that
these concr—*s be transferred to a new and unfamiliar context. If this is
indeed the as.:ssment goal, however, the student should not have been
prepared for the problem (for example, as an examination question)
through prior exploration in class of the properties of @ as an operation.
Were the student to know before seeing the problem that the mean can be
treated asa binary operation, perhaps even having seen introduced a symbol
such as @ to stand for the operation, having learned that it is commutative
butnotassociative, and having seen these propertiesillustrated for the mean
with examples and counter examples, then we are not assessing transfer to
a new context at all, but only how well the student learned what was taught
about the operation in this context. Thus, to accomplish the stated goal of
the assessment, we are toalimited extent testing the studenton material that
has not been taught—something widely regarded as unfair, and whose
purpose is not well understood by the public.

But the issue is not limited to what the student has not seen. For
the problem to accomplish its assessment goal, it must also be understood
that the student has some prior understanding of “the average or mean of
two numbers.” If not, the problem as posed may never address the transfer
of the concepts of commutativity and associativity to a new context, because
the intended context is itself not understood. It must also, of course, be
assumed that the student has some prior knowledge of commutativity and
associativityin other contexts, such as addition or multiplication. Thus what
the problem actually assesses depends sensitively on the student’s prior
preparation; for the intended purpose, there is a fine line between prior
preparation thatis necessary and that which is impermissible. These condi-




tions are, at least to some extent, controlled directly by the classroom
teacher; thus whal is accomplished by an assessment depends on the leacher’s
understanding of the intent of the assessment.

Suppose that the prerequisites are in fact met: the student has
some understanding of the mean, buthas not seen its properties as a binary
operztion discussed. Then a variety of complex cognitive processes can
occur. The student might employ any of a number of heuristic strategies.
One approach is to make trials to determine whether @ is commutative: try
6 @ 8 [which is (5 + 8)/2 = 14/2 = 7], and compare the result with 8 @ 6
[which is (8 + 6) /2 = 14/2 = 7]. The decision to compare 6 @ 8 with 8 @ 6
through calculation would seem to require syntactic transfer of the commu-
tative property, as normally stated for the binary operations + or x, to the new
operation @, using a procedural notion of binary operation, that is encour-
aged by the calculation of 6 @ 8 in the problem statement. Several further
trials might convince the student that commutativity holds, but this conclu-
sion mayberegarded (correctly) asa conjecture, or (incorrectly) asa proven
fact, depending on the student’s understanding (ata level of mathematical
logic more sophisticated than is generally appreciated) of what constitutes
an unfounded conjecture, what constitutes a conceptual reason for a
mathematical pattern, and what constitutes proof. At some point, the
student might reason by modeling the general on the particular (another
heuristic strategy) and ask, Why is the operation commutative? We are
dividing by two in all cases, in whichever order; thus @ is commutative
“because a sum like 6+ 8 isalways the same as 8 + 67; that s, because addition
is commutative for the pair 6 and 8, and “the same argument” applies to any
other pair of numbers.

Similarly, associativity could be investigated by making trials, for
example, by comparing (6 @ 8) @ 2 with 6 @ (8 @ 2), by choosing three
differentnumbersmore orless atrandom to test and test again, or by making
syntactic transfer of the meaning of associativity from a familiar domain. The
first calculation gives 7 @ 2 = 4.5; the second gives 6 @ 5 = 5.5; thus, the
answersare different. If the studentunderstandstherole ofa counterexample
in disproving a conjecture made for all numbers, then it is demonstrated
that the operation @ is not associative.

We see that the problem, if used asintended, can assess not only
the transfer of the concepts of commutativity and associativity to the new
situation, but also the use of some problem-solving heuristics and the
understanding of mathematical reasoningata fairly sophisticatedlevel. And
indeed, such capabilities are an important, but often tacitly disregarded,
part of the conceptual understanding of structural properties in mathemat-
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ics such as commutativity and associativity.

Aswas mentioned, some prior acquaintance with the mean of two
numbers is assumed in this problem, but thus far only its procedural
interpretation using formal notational symbols has been discussed. Of
course, understanding the mean of 6 and 8 encompasses far more than the
procedure of adding and dividing by two. There is descriptive knowledge
about the mean, for example, the anticipation that the result is a number
between the original two. There is visualization of the mean, such as its
semantic interpretation as an intermediate height, or as the midpoint of a
segment joining the two original numbers on a number line; there is its
interpretation as a center of mass, and so on. Such representations can help
with the problem: If @ is seen as specifying the midpoint of a line segment,
for instance, the commutative property can be understood as the assertion
that the midpoint is independent of the order in which we specify the end
points. Similarly, understanding of commutativity and associativity can
involve descriptive knowledge, for example, the idea that if one of these
properties holds for a few generic examples it is probably true, but that
examplesinvolving identity elementsare notgeneric. Itcan involve imagery,
for example, visualizing the commutativity of addition as describing the
reversal of two rods glued together, automatically preserving the total
length. The problem posed can thus assess transfer of understanding to a
new domain, but the understanding whose transfer is assessed may be, but
is not necessarily, more than procedural/notational.

Minor variations of a problem like this one can lead to very
different conclusions about what is being assessed. After the knowledge
needed to solve the problem (or that is potentially helpful in doing so) is
analyzed into several components, itis instructive to consider what happens
when we provide students with elements of one or another component
within the question itself. For example, the following knowledge compo-
nents related to Problem 3 might be identified:

® The calculation of @ (that is, a procedure for finding the
mean);

® The definition of commutativity and associativity for a familiar
operation;

u The definition of these properties for @ (entailing transfer of
the statement of each property);

® The understanding that to suggest a possible property of an
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operation is to make a conjecture that can be investigated, not
to state a fact or convention that must have been previously
learned (so that the answer “I don’t remember,” or “We haven’t
had that yet,” is seen as inappropriate to this question, while it
might be appropriate to say “I don’t remember” if asked to state
the commutative property);

The trying of special cases (use of a heuristic process that may
not be necessary but can be helpful here);

The seeking of mathematical reasons for a pattern;

The modeling of the general on the particular (a potentially
helpful process);

The construction of related representations of the operations
or of the properties (for example, the mean as the midpoint of
an interval); and so on.

The variation shown in Problem 3a seeks to remove its depen-
dence on prior acquaintance with the mean by including an explanation.
Let us consider what else happens: The change in the problem suggests a
change in our assumptions about prior knowledge, that s, the assumption
here may be thatwhile the student has prior acquaintance with the commu-
tative and associative properties in connection with operations such as
addition and multiplication, there is no prior acquaintance at all with the
mean. If this assumption is true, solving the problem then requires more
than the transfer of the concepts of commautativity and associativity to a new
domain. It requires, and assesses, the student’s ability to construct the new
domain from the given verbal description of a new operation; and if this
ability is undeveloped, the assessment of transfer will never take place. This
represents a significant change in the originally stated objective.

Problam 3a. Let the symbol @ stand for the average or mean of two numbers. This is
found by adding them ard dividing their sum by 2. For exampls, 6 @ 8 = 7, hecause 6 +
Sis 14, and 14 divided by 2 is 7. Is the operation @ commutative? is R associative?
Explain why or why not.

In the nextvariation of the problem (3b), we also remove the need
torccall the statements of the commutative and associative properties for a
familiar operation. The resultis to change the tacitassumptions still further.
In revising the problem this time, wc have done morc than assist tise student
with recalling statenients of the commutative and associative properties.
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Without some explicit statement to the contrary, we have also modified
drastically the assumptions about prior knowledge. From Problem 3b, it
might be inferred that because commautativity and associativity are defined
in the problem statement, we are not trying to assess anything about their
prior conceptual understanding at all, but to assess the student’s ability to
construct mathematical interpretations of these concepts from new defini-
tions, to transfer the interpretations to a newly constructed domain, and to
use appropriate heuristic reasoning techniques.

Problem 3b. The operation cf addition {+) is commutative because when two numbars
are added, thairsum is the same in eilher order. For axample, 6 +8=142nd 8+ 6=
14. Addition is also assoc/ativc, because when three nurmbars are added ¥ does not
matter which pair is added first. For sxample, (6+8)+2=14+2=16, while6+(8+2)
=6+10=16.

Now let the symbol @ stand for the average or mezn of two numbers. This is found by
adding them and dividing their sum by 2. For sxampla, 6 @ 8= 7, because 6 + 8 is 14,
and 14 divided by 2is 7.

Is the operation @ commutative? Is it assoclative? Explain why or why not.

Problem 3cremovessome of the dependence on knowledge about
conjectures, proofs, and counter examples. In this version, the student is
again asked to interpret a prior understanding of commutativity and
associativity in an unfamiliar operational domain (@), but instead of having
todecide whether @ obeys these properties, using knowledge about the role
of conjectures, proofs, and counter examples, the resultis provided and the
reasoning process is structured for the student within the problem state-
ment. The student must only try special cases to fulfill the stated conditions.

Prabiem 3c. Let the symhol @ stand for the averags or mean of two numbers. For
example, we shall write 6 @ 8 = 7, because 7 is the mean of the pair 6 and 8. Give an
example (using two numbers) which ilfustrates the commutative property of the
opsration @. Give an sxample (using three numbers) to show that @ is not assaciative.

Another variation of the problem (3d) stresses the use of a
representation other than formal mathematical notation. Under the right
conditions, a version such as Problem 3d assesses first a particular capability
of the student—the ability to constructanumber-line representation for the
new operation (@)—and then assesses the transfer of prior conceptual
understanding of commutativity to the new context in relation to that
representation. This is distinct from the (rather less definitive) assessment
of the student’s spontancous decision to construct such a representatior,
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which might or might not take place in the course of solving other versions
of the problem.

Problem 34. Let the symbol @ stand for the average or mean of two numbers. This is
found by adding them and dividing their sum by 2. For axample, 6 @ 8 = 7, becauss 6 +
Sis 14, and 14 divided by 21is 7.

Draw a number line and, using two numbers as an example, show the meaning of @
wihi a diagram on the number line. Then explain what your picture = uggests about
whaether @ Is or is rot commutative.

The above problem variations illustrate two things: First, beyond
the problem statement itself, it is the assumed conditions of prior learning which
in a major way determine the kinds of cognitive processes that solving the problem
elicits, and which the item thus assesses. Second, whether or not a problem assesses
a particular capability depends on whether the student actually reaches the point in
the problem where it would be appropriate to make use of the capability. Even if simple
recall of a concept (such 25 die mean) is part of what the item is intended
to assess, the assessmentof otheraspectsof the student’s understanding may
be contingent on a positive outcome for this one. In short, there are always
contingency structures implicit in assessment by means of complex tasks.

These observations apply to many modes of problem presenta-'
tion. In some modes—individual interviews, computer-based assessment,
and possibly group problem-solving—there is the possibility that specific
heuristic suggestions or hints can be provided to the problem solver along
the way. Then, whether or not particular cognitive capabilities are assessed
need notbe entirely dependenton the student’s prior successful exercise of
other capabilities on the same problem. Some of the many different things
that the above problem variations assess could, for example, be observed
within a single v cll-designed clinical interview through a series of carefully
structured questions. In such an interview, the most important design
principleis to permit the student, at each stage, maximum latitude for “free”
problem solving—providing minimal suggestionswhen animpasse isreached,
so that spontaneous cognitive processes can occur and be observed.

Let us summarize the major points of similarity and difference
between the variations of the nontraditional question, Problem 3, and the
previously discussed traditional one, Problem 2, What is assessed by the
routine problem depends, like the nonroutine problem, on prior knowl
edge; and it too has a contingency structure such that the opportunity for
successful application of some capabilities depends on other capabilities.
Butin the routine problem, the prict preparation of the student is assumed
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to beas direct as possible; little that is new is expected to be constructed; and
the structure of capabilities (if regarded at 2ll) is usually simplified as much
as possible, as in Figure 1. In the nonroutine case, we expect new construc-
tions, but until we introduce a cognitive model, what they might be is only
implicit. Depending on the processes that we want to assess, it is possible
create numerous problem variations, even to provide suggestions along the
way, ensuring that whether certain capabilities are assessed is independent
€ the student’s successful use of others. But some teachers, familiar with
~- ire routine problems, may not expect new constructions, or may be
unable to specify the requisite capabilities. And if a nonroutine assessment
item is to be used for evaluation purposes, there may be considerable
pressure on the teacher to provide direct experiences, which can defeat its
purpose. With these comparisons in mind, we now turn to the issue of
creating an assessment framework.

TOWARD A FRAMEWORK FOR ASSESSMENT BASED ON A COGNITIVE MODEL

An assessment framework must be much more than a collection of
routine or nonroutine problems of various degrees of complexity in various
content domains. It should enable us to describe the capabilities that are to

be assessed, tomake explicit the conditions of the assessment, and to explain
how the problem items are intended to be used to elicit and measure the
student’s cognitive processes. Keeping in mind our earlier discussion, the
framework should have the following characteristics:

u Itshould be based on an independent characterizatior: of the
understanding that we want to assess, so that we can infer
cognitive capabilities from behaviors without identifying
abilities with behaviors.

It should bte descriptive, that is, capable of informing us what the
individual student can and cannot do, and capable of describing
heuristics, representations, or concepts that are partially devel-
oped. We need to move toward a pictuare that lets us sce each
student’s emerging capabilities and how they are structured.

It should be reflective, allowing the student not only to grapple
with mathematical discovery and conceptual constructions but
to reflect on these processes. Thus, part of what is assessed
should be the student’s own self-descriptions, and how the
student places mathematical activity contextually in his or her
own life.




Systoms of Cognitive Representation

To specify what is meant by mathematical thinking, that is, to
describe independently the understanding that we want to assess, requires
thatwe consider ways in which information can be represented internally by
problem solvers. We have previously discussed five kinds of cognitive repre-
sentational systems brought to bear during mathematical problem solving;
they are sufficiently different from each other to deserve separate mention
(Goldin, 1987; 1988): (i) verbal/syntactic, (ii) imagistic, (iii) formal nota-
tional, (iv) executive/heuristic, and (v) affective. These systems, together
with some important processes that interface among them, are depicted in
Figure 2. Such a model providesa way to organize and to characterize some
of the capabilities comprising mathematical understanding.

Before discussing briefly each type of representational system, let
me stress that the goal I propose is not to assess these separately and
discretely. Typically, any skilled problem=olving activity in mathematics
entails an interplay of several systems of cognitive representation. Thus, the
assessment goal is to provide opportunities for many such systems of
representation to be brought to bear, notonly so that specific competencies
within particular systems can be observed, but to gain wholistic information
aboutthe student’s abilities in coordinating various representations, and in
appropriately recasting mathematical ideas from. one internal system of
representation into another.

To treat cognitive representational systems as components of an
assessment model relates directly to how we see the purpose of mathematics
education. It presupposes that we are not trying only to teach sets of
problem-specific skills, but to develop broad, powerful cognitive systems
that can enable the student to grapple with new situations as they arise, to
represent them internally in a variety of ways, and to think mathematically
by making use of the representations.

Letmenextcomment briefly on Figure 2, and in doing so compare
it with the more naive model in Figure 1. Figure 2 omits external configu-
rations entirely (to keep the diagram to manageable size). The five rect-
angles refer to internal systems of representation, and the ovals to processes
thatinterface between them. Itishelpful here to think of a representational
system as consisting of configurations of a certain kind, together with
higher-level structures that determine the configurations that are possible
and the ways in which they can be processed. The processes in the ovals
describe how configurations in one system of representation can evoke,
influence, or result in new constructions of those in another.
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Verbal/syntactic system of representation. First we have verbal configu-
rations, equipped with syntactic structure. Certainly an important aspect of
mathematical understanding involves competencies associated with the
synfactic processing of ordinary ianguage, ranging from identification of
declarative information and questions or goal statements in a problem, to
recognition of various kinds of mathematical phraseology. In discussing
Problem 2, for example, we criticized the attempt to characterize the
mathematical reasoning as purely syntactic translation (for example, from
a phrase taking the form “x A’s at yB's per A,” into an instruction to multiply);
but of course, the recognition and processing of syntax remains important.
In a capable solver, however, many other cognitive processes should be in
play, prior toand in addition to translation into formal symbolic procedures.

Imagistic system of representation. Imagistic representation includes
the construction and processing of visual/spatial configurations, tactile/
kinesthetic configurations, and so on, For example, when we discussed
various understandings of the mean (the operation @ in Problem 3), one
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possibility included its visualization as an intermediate height. There could
also be a kinesthetic component to such a representation (for example, the
student might imagine indicating the intermediate height with an out-
stretched hand). Construing the mean as the location of the center of mass
of two equally heavy objects atgiven locations suggests a kinesthetic con figu-
ration, inwhich the student imagines balancing the two masses with a finger
on the midpoint of the segment connecting them. A conceptual under-
standing of “x A’s at yB's per A” undoubtedly involves concrete, imagistic
models of extensive and intensive quantities, of units or groupings of
objects, and so on. Imagistic configurations can be evoked by words, by
symbols, by heuristic processes (for example, the “drawa diagram” strategy),
or by affect. It is certainly 2 mistake to omit them from an assessment
framework.

Formal notationalsystem of representation. Formal notational process-
ing refers to systems of mathematical symbols and their use (for numeration,
for arithmetical operations, foralgebraicrepresentation, and soon). Figure
2isintended to suggest notonly calculation and computation (for which we
can envision cognitive processes within the rectangle), butalso the in terpre-
tation of notational configurations imagistically, the monitoring of formai
procedures (for meaning, for reasonableness, and so on), the description of

formal processes verbally, and so forth, as represented by the oval compart-
ments. Traditional assessment schemes in mathematics have placed a lot of
emphasis on formal notational processing, but relatively little on the
interface between formal notational and other systems of representation.

Executive/heuristic system of representation. Executive decisionmaking
and control, monitoring of the student’s own problem-solving processes,
and beuristic planning are considered as another cognitiv. representa-
tional system. Here we include complex, well-formulated strate; i< such as
trying special cases, means-ends analysis, or drawing diagrams, =s well as
more vaguely defined strategic decisions. When we speak of a reflective
framework for assessment, the intent is to include as a goal the descripiion
not only of students’ heuristic planning and problem organization capabili-
ties, but also of certain self-referential or metacognitive capabilities—their
concomitant monitoring of their own mathematical reasoning, their intro-
spectionsin relation to their own problem sclving, and their discussions and
retrospective analyses of their planning processes.

Affective system of representation. Finally, it is important that an
assessment framework include the assessment of affect—the feelings or
emotional states that occur during mathematical activity, and the conse-
quences of those feelings. This should not be limited to long-term belicfs




Toward an Assessment Framework for School Mathematics

and attitudes about mathematics, but should address the changing states of
affect during mathematical activity: Does the student begin with a sense of
curiosity and anticipation of mathematical discovery, or with worry and seif-
doubt? Does anxiety impede the student, and if so, what is its source? Does
the student make use of feelings of frustration constructively, tosuggest new
heuristic processes (such as trying a simpler problem), or are they a signal
to give up? How much fun does the student have with mathematics? Clearly,
the assessment of affect must involve a great deal of sensitivity to the
individual, making use of modes of interaction very different from those
traditional in mathematical assessment.

Cenceptual Understanding In Specific Coatent Domains

Cognitive representation does not take place in the abstract, but
always in a contextual domain of knowledge, sometimes referred to as the
mathematical content in the curriculum. For purposes of assessment, it is
useful to see conceptual understanding in any particular content domain as
involving configurations and processes that cut across many representa-
tional systems. For example, Problem 2 involved the multiplication and
subtraction of multidigit numbess in the context of money and making
purchases; such an activity would conventionally be taught as a story
problem exercise, addressing that content. However, we saw that the
representational capabilities that the problem assesses are not usually made
overt. The problem content can be formulated in complex imagistic and
heuristic ways, or its representation can be limited to formal notational
computation. For Problem 1, on the other hand, we listed anumber of broad
capabilities, which could now be spelled out in considerably more detail
using the model in Figure 2, Only two of these, (addition and subtraction of
numbers, and the properties of numbers that are relatively primal) refer
specifically towhatis commonly called mathematical content. Itis clear that
the emphasisis noton these but onassessinga ratherwide variety of heuristic
capabilities. In Problem 3, we saw how setting out to assess mathematical
content (commutative and associative properties) at a deeper level of
understanding leads into issues of heuristic and imagistic representation.

Structured collections of domain-specific capabilities, organized
into sets of related configurations in several different cognitive representa-
tional systems and accompanying information-processing action-sequences,
give descriptive meaning to what are sometimes called schemes. Thus, the
desired assessment framework can be visualized as a kind of Cartesian
product of domain-specific mathematical content with the cognitive pro-
cesses in several representational systems depicted in Figure 2. Traditional
mathematics tests have tended to emphasize the former while ignoring the




latter; an assessment framework that achieves both is clearly necessary.

Birections for Research and Develspment

A high pricrity should be to develop a working model of such an
assessment framework in a particular content domain (perhaps for a
standard curricular topic at the elementary or middle school level, such as
whole number multiplication) that can be tried on a small scale and then
extended. First, the cognitive model underlying the assessment framework
should be developed carefully, including precursor representations and
several different kinds of cognitive representation of the central concepts.
Then the framework needs to be implemented with a variety of methods for
assessing the key cognitive components (not in isolation, but in combina-
tion), such as structured interviews, concrete models, group problem
solving, creative projects and portfolio evaluations, as well as pencil-and-
paper tests and (perhaps) contingency-based interactive computer environ-
ments. A useful system mustbe able to provide accurate descriptions of what
students can do, as well as to identify weaknesses or inadequately developed
capabilities; the issue of the reliability or repeatability of the techniques also
needs to be addressed.

Ultimately, it will be not only our willingness to join broad,
adequately complex cognitive models with the more domain-specific math-
ematical content traditionally tested, but also our commitment to develop
understanding of new assessment goals and methods in teachers, adminis-
trators, parents, and the general public, that will enable us to assess
meaningful mathematics learning effectively.
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Research and
Classroom Assessment
of Students’ Verifying,
Conjecturing, and
Generalizing in

Geometry

Daniel Chazan and
Michal Yerushalmy

When evaluating the effect of an educational
innovation, itis important to test for the goals that the innovation has set out
to accomplish. In the Supposer approach to teaching geometry (described
below), in addition to teaching the content of high school geometry,
teachers try to inculcate in their students mathematical and scientific
inquiry skills, beliefs, and attitudes that are helpful in solving inquiry
problems. These skills develop in students throughout a year-long course.
We would like to be able to assess the success of this approach in teaching
students to be good inquirers. The task is an extremely dif{ cult one.

We begin this ckapter with a short description of the approach we
favor for teaching high school geometry. We then provide a rough outline,
which we developed with a group of teachers, of the types of higher-order
skills (as well as beliefs and attitudes) involved in exploring an inquiry
problem. Having provided this background, we concentrate on students’
verifying, conjecturing, and generalizing skills. We first present a research
instrument designed to compare gener. zations created by students. After
presenting this paper-and-pencil test, we presenta more thorough analysis
of the verifying, conjecturing, and generalizing skills used by competent
explorers of inquiry problems. This analysis derives from sessions with
classroom teachers as well as considerations suggested by the research
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literature on induction and thinking skills (Gentner and Gentner, 1683;
Holland, Holyoak, Nisbet, and Thagard, 1986; Kuhn, Amsel, and O’Loughlin,
1988; and Nickerson, Perkins, and Smith, 1985). Finally, we suggest some
classroom methods for assessing students’ progress in developing verifying,
conjecturing, and generalizing skills and a grading scheme for students’
reports designed to encourage the skills we wish to foster.

ONE WAY TO USE THE SUPPOSERS

The Geometric Supposers (Schwartz, Yerushalmy, and Education
Development Center, 1985) are computer programs thatallow users to start
with an initial shape (for example, a triangle), create geometric construc-
tions (for example, draw all the altitudes), and make measurements of the
diagrams that result from the constructions. The programs also store a
record of users’ activities as a procedure which then can be repeated on a
new initial shape (for example, any other triangle, see Figure 1). This repeat
feature allows users to test the generality of the conclusions theyreachabout
the results of a particular construction. (See Yerushalmyand Chazan, 1990,
for a2 more detailed description of the software and the ways it supports
students in using diagrams.)

With paper and pencil, one can do all that these
programs do, but not as quickly nor as accurately. This
difference in speed and accuracy makes feasible an ap-
proach to the teaching of Euclidean geometry only theo-
retically possible with pencil and paper. (For a compre-
hensive description of this approach, see Chazan and
Houde, 1989.) In thisapproach, studentexploration
becomes an important part of the course. Classes
no longer meet only for teacher presentations to
the whole group or for review of homework
problems. Teachers pose open-ended inquiry
problems to students that. lead to fruitful
exploration. (For an exa.nination of such
problems, see Yerushalmy, Chazan, and
Gordon, 1988.) These, in contrast to
Schoenfeld’s (1988) description of tra-
Figure 1 ditional five-minute exercises, are
Am‘“." inthres usually explored for one or
diterent triangles. obluse more classroom periods,
written about for
homework, and then

discussed.
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Students explore the problems with the aid of the Supposers,
usually in pairs in a computer lab, and generate conjectures. Some of the
conjectures are true and some are false. Some of the false conjectures are
casily modified to be true. In class discussions, students share their conjec-
tures and present arguments in favor of their ideas. As students are intro-
duced to mathematical proofs and as their facility with deductive proof
develops, they are expected to present deductive arguments (formal or
informal) for their statements.

In thisapproach, students do notsit down to prove statements that
they know are true and that they know have been proven year after year in
geometry classes. Some of the statements that they try to prove may not turn
out to be true; others may not be present in their textbooks and may be
unfamiliar to their teachers (Kidder, 1985). With this approach, there is a
new goal for students and a new standard for student performance: students
should become competent explorers of open-ended problems. This new
goal requires that students know how to work together and break down a
large task, generate hypotheses, use the computer to get feedback about
their hypotheses, formalize their hypotheses, generalize their hypotheses,
change and extend a problem, and argue for their conclusions.

Suppeser Inguiry Skills: An Outiine

We explcred this new standard with a group of teachers as part of
athree-year study conducted under the auspices of the Harvard Educational
Technology Center (ETC). Throughout the first two years of monthly
meetings, the teachers in the group referred to two sets of goals for their
students: the traditional curriculum and the Supposer curriculum. The
group divided the goals of the traditional geometry curriculum into two
parts. The first part encompassed the postulates and theorems of the course
in the order in which they are introduced. Students demonstrated a
knowledge of this part of the curriculum by being successful at problems
that ask them to write simpie proofs. Students were rarely asked to write
complicated proofs of more than 10 steps or that require lemmas. The
second part of the traditional curriculum, a second avenue for student
demonstration of mastery of the course material, was
a numerical part. Students demonstrated mastery by
successfully solving problems that asked them to use
knowledge of the srems and postulates to find missing
measurements in figures when other measurements
are presented. For example, in the drawing atright, O
is the center of the circle. Students are asked to find
length AC.
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When describing the Supposer curriculum, teachers used the
phrase “good explorers” to describe the expectations they had of their
students. Later the group began to call the Supposer curriculum the
“metacurriculum,” because the goals of the Supposer curriculum were not
related to the content—numerical or theoretical—of a geometry course,
but were higher-order goals related to scientific exploration and the doing
of mathematics.

During our third year, we decided itwasimportant to become more
articulate about the types of skills and beliefs that students needed and were
lacking. As a result of group discussions (which included group exploration
of problems and documentation of skills used and necessary beliefs), we
created alist of types of inquiry skills and beliefs. We hoped that thislist would
provide a set of goals toward which we would design activities to help students
become better inquirers. We decided on the categories in Figure 2.

Figure 2. Nine categories of Inquity skills and beiiefs. The groupdistin-

guished between verifying

and proving. Verifying was

Veriying deﬁned.as an activity, fre-

quently involving measure-

ment, carried out on a spe-

Beliefs about Attitudes cific number of examples.

inquiry about self Proving involves deductive

reasoning aboutan infinite

number ofindividual cases.

Generalizing Thegroupalso distingished

between conjecturing and

Thoughts about generalizing, a distinction

mathematics which will be explained

below. The group broke

down each of these nine categories into simple skills or beliefs. These are
given in Appendix I.

Communicating  General problem solving

Conjecturing

While this list of inquiry skills is clearly insufficient, it does
delineate the wide range of skills and beliefs that students need. (For a
theoretical discussion of the kinds of knowledge—resources, control,
heurstics, and beliefs—students need, see Schoenfeld, 1985). Assessing
each of these nine kinds of skills and beliefs is an enormous task. Therefore,
in this paper we will focus on assessing three of the nine categories: students’
verifying, conjecturing, and generalizing skills.

First, we will present an instrument that we have used in our
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research and which was designed to help us compare students’ generaliza-
tions. While this instrument was helpful for evaluating the innovation, for
comparing Supposer and non-Supposer stu-ents, it is not helpful for the
kind of assessment that teachers do in their classrooms, that is, ongoing
assessment to guide further instructional decisions. In order to do this kind
of assessment, one needs a more careful description of the desired skills and
an evaluation scheme that focuses on these skillsand not on outcomes. After
describing in greater detail the verifying, conjecturing, and generalizing
skills that we wish to promote, we will present an adaptation of our research
instrument that is designed for classroom use. However, before presenting
any assessment instruments, we will clarify the meanings we assign to the
words generalization and conjecture.

' COMJECTURES IN GEOMETRY

We use the term conjecture to refer to statements whose truth
value is not known at a given time. Aithough the statements have been
explored and tested, there is, as yet, no reason to reject them (as opposed
to hypotheses that haven’t been tested yet). In geometry, conjectures have
three key parts: the relationship described in the conjecture, the set of
objects for which the relationship holds, and the quantifier, which deter-
mines the members of the set of objects for which the relationship holds.
Conjectures are not always stated completely; sometimes one or more of
these key parts is not explicitly stated, but is understood.

People create conjectures in different ways; calling a statement a
conjecture implies no particular process of creation. A conjecture can result
from belief, experience, attempts at explanation, deductive proofs,! or
generalization. Generalizations are a particular kind of conjecture, conjec-
tures created by using one of the following two generalization processes to
reason from the specific to the general.

TWO GEXERALIZATIIN PROCESSES IN MATHEMATICS

In mathematics, generalization processes do not produce defi-
nite, proven knowledge. Instead, they resuit in the creation of a special kind
of conjecture—a generalization. Though it is difficult to determine how a
particular generalization was made, we feel that itis valuable to distinguish
two ways in which generalizations are created:

8 Induction is a process for reaching generalizations by examining
instances or examples. The generalizer examines an instance or
a set of instances and identifies some of their properties. These

10z




Research and Classroom Assessment

examples are then identified as members of a larger set to
which they belong, and the properties of the examples are then
imputed to the larger set. Chi ar.d Bassok (1989} argue that
induction (generalization from examples) is based on the
perception of similarity between examples.

u Condition-simplifying generalization (Holland et al., 1986) is a
process that is carried out on a statement (in mathematics,
either a conjecture or a proven statement). This process
proceeds by the relaxation of conditions within: the original
statement to produce new statements. Studies investigating this
generalization process suggest a connection between a person’s
ability to generalize in this way and their disposition towards
constructing explanations for the original statement and their
ability to do so (Chi and Bassok, 1989).

In geometry, statements usually include a diagram or some nu-
merical information in addition to the written text. While the distinction
between the two generalization processes described above is clear in theory,
the presence of diagrams and numerical information causes this distinction
to blur when applied to geometrical statements. For example, when the
statement contains a numerical condition that is modified or relaxed,
induction seems to be an appropriate, or natural, description of the process.
In this view, the initial statement is one example, and any statement that
substitutes a different numerical value is another example. A more general
statement is reached by examining each of these specific cases. On the other
hand, when a diagram is presented along with a statement, it is difficult to
know whether a person involved in making a generalization is working fromn
the example in the diagram or from the statement. To draw conclusions in
such a case, one mustinfer whatis taking place in the mind of the generalizer.

RESEARCH ON ASSESSMENT

We will begin our description of assessment instruments by de-
scribing a paper-and-pencil test designed by Yerushalmy (1986) that pro-
vides a structure for comparing outcomes (students’ generalizations.) This
test was designed for use in comparison studies. We were interested in
assessing differences in competence at generalizing between Supposer and
non-Supposer students. (See Yerushalmy, 1986, and Yerushalmy, Chazan,
and Gordon, 1987, for results.) Given this goal, a paper-and-pencil test
seemed appropriate, since it can be easily administered to a relatively large
number of students. Also, as compared to an interview format, a pencil-and-
paper testis less liable to change students’ performance. During the course
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of an interview, considerable learning may occur. Finally, a written test
forces students to formalize their thoughts in a way that does not necessarily
happen in an oral interview.

This test also allowed us to examine other interesting guestions:
Whatkind of representations of geometricideas do students choose towork
with? Do they focus on a visual representation, or do they work with the
numerical data that ar given? Do students provide explanations for their
generalizations? If so, what types of explanations do they provide? Do
students present proofs as explanations for their generalizations? Since the
test was given in a pre/post format, we were able to examine differences
between students’ performance at the beginning of a geometry course and
after one year of studying geometry. Also, we were able to compare students’
responses to problems that present numerical data and problems that give
students a statement as a starting point. (See Yerushlamy, 1986, and
Yerushalmy et al., 1987, for a discussion of these issues.)

While this test is by no means the last word on assessment of
students’ generalizations and though it focuses on outcomes—generaliza-
tions—and not on verification, conjecturing, and generalization skills, we
still feel that it represents an advance. First of all, to our knowledge, this is
the first test used with students in a classroom setting that focuses on
students’ ability to make generalizations when given a statement or a smali
amount of data and a limited amount of time. (See the description of the
instructionsgiven below.) The fact that students were able toaccomplish the
tasks set for them, that they produced generalization of different kinds, and
that the test seemed to indicate meaningful differences between different
treatment groups are all hopeful signs for future assessment of these types
of skills. (See Yerushalmy, 1986, and Yerushalmy et al., 1987, for these
results.) Also, based on this work, we have been able to design other types
of assessment that might be useful for classroom teachers interested in
assessing the level of their students’ verification, conjecturing, and general-
izing skills.

A CONJECTURE/GENERALIZATION TEST

We will present the version of the test that was used in a study
carried out in 1985-86. (Sce Yerushalmy et al., 1987, for a description of the
study.) In this siudy, the conjecture/generalization test, along with class-
room observations, students’ written work, an argument test, and teachers’
and students’ comments, were data sources for observing the types of
generalizations students made in their geometry classes and for comparing
Supposer and non-Supposer students.
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A pretest and posttest were developed to assess students’ ability to
make generalizations concerning given data or a description of a geometric
situation. The pretest and posttest consist of four and three problems
respectively, each presenting a statement, a group of mathematical facts, or
amathematicalideafrom plane geometry, alongwithappropriate diagram(s).
The geometric content of the problems was familiar. Thus, the problems on
the pretest were about material covered in previous courses. The first two
problems on both tests included numerical data. They were designed to
provide insight into students’ ability to generalize by induction based on
giveninstances. Students could generate new data for themselves by drawing
new instances, adding auxiliary lines, and following deductive lines of
rezoning that made new information available. Problems 1 and 2 are from

the pretest. The remaining prob-
Problem 1. The numbers on the diagrams lems (3 and 4) describe an idea
below represent ihe measure of angles, abstractly. These problems were
langths, and areas. For example: The length  designed to provide insights into
of AF is 3.85. The angle CAD is 41 dagress. i\ jents' ability to carry out con-
Tha area of triangle COG s 2.1 dition-simplifying generaliza-
tions.

List as many signiticant connacted state-
mants as yo: can make. Problem 2. The right
A

triangles on the grid below
have 3, 6, and 8 points on
their perimeter.

List as many significant
connected stateraents as you
tan make.
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Problem 3. A line which passes
through the center of a squaie and
ts paralisl to two of its sides
divides the area of the square into
two squal areas.

List as many significant connected
statements as you can make.

(Taken from Bell, 1976.)

Problem 4. P, Q, and R are points on the sldes of triangle ABC.

Diagram 1 Diagram 2
C

in diagram (1), triangle ABC and triangle PQR / /\ /
are both aquilateral.

In diagram (2), triangle ABC is equilateral,
triangle POR is not.

List as many signiticant connected statements as you can make.

The instructions on these tests ask students to “list any significant
statements” connected to the problem. The instructions are deliberately
vague in order to ascertain what students consider “significant” and “con-
nected.” We asked teachers to refrain from explaining or elaborating on the
instructions when they administered the tests. In framing the instructions,
wewished to invite any plausible idea, not only generalizations, and as many
statements as possible. There were no constraints such as demanding that
the statements be true or be supported by arguments.

When these instructions were initially designed, a researcher in
the area of thinking skills examined them and suggested thatin hisview the
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instructions were too difficult ang that students would not be able to follow
them (D. Perkins, personal communication, December 6, 1985). While the
instructions are certainly laconic, students did not scem to have difficulty
with them (Yerushalmy, 1986; Yerushalmy et al., 1987). In describing an
instrument for classroom assesstnent, we will present expanded instructions
designed to elicit specific inquiry skills.

Scering the Test

We will present here a refined scoring scheme used by Yerushalmy
and Maman (1988) in astudyinvolving another version of the test presented
above. (See Yerushalmy and Mamman, 1988, pp. 4043, for a more detailed
description of the scoring scheme.) The scoring scheme is predicated on the
assumption that on each problem studentsare likely to make more than one
statement.

Students’ statements were scored using four central varia. s
defined by Yerushalmy (1986). Of these variables, changes made to the
original statementin order to create the generalization (CHANGES) is scored
on a 0 or 1—exists or does not exist—scale. The level of the generalization
(' -+=L),its originality (ORICINALITY) (called plausibility by Yerushalmy, 1986),
an.’ its correctness (CORRECT) are rated on a 04 scale. These variables are
related; we do not consider them to be distinct.

In order to assess CHANGES, for each problem on both tests, a list of
attributes was compiled using Brown and Walter's (1983) analysis of similar
problems in plane geometry. Each list was divided to three parts, using the
Structure-Mapping Theory developed by Gentner (1983) and the Defini-
tion of Spontaneous Analogy by Clement (1983). The three parts are (i)
geometric attributes, (ii) numericalattributes, and (iii) key (fixed) features.
Since students working with the Supposer are trained to see geometric
situations as involving an initial shape on which constructions are made, in
assessing CHANGES, we added one category to the scheme suggested by
Clement’s and Gentner’s work. We broke out the object of interest—the
type of polygon given in the problem~—from the category of fixed variables.
Thus, we were interested in four types of changes that students might make
to the problem situation. (Kxamples of the first three types of changes for
the problems given above appear in Appendix E-2 of Yerushalmy et al.,
1987.) The four types of changes are as follows:

m  Object of interest. Replacement of the central geometrical object
with a more general one; for example, any triangle instead of a
right triangle.
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m  Geomeiric relationships. Replacement of one geometrical relation-
ship by another; for example, movement of a point from inside
a triangle to outside it.

» Numerical variables. Treating a numerical aspect of a situation as
avariable,

u Fixed variables. A catch-all category for unexpected changes; for
example, moving from two dimensions to three,

Students were given a 0 if their statement simply repeated the information
given and did not change any aspect of the given information. They were
given a 1 if they made any of the above changes.

The LEVEL variable examined how the students presented their
data (both the given data and data that they generated) and their commu-
nication of their statement. Students’ written work was examined and was
assigned a LEVEL value from 0 to 4 according to the following scheme:

0: Students’ do not write a statement. For the problems posed
abstractly, their statement is less general than the given statement.
For the problems posed with data, their statement simply repeats
the data.

: There is some discretion here in deciding between a 1 and a 2,
depending on the type of change made and the number of
changes examined. Students sometimes change some aspect of the
problem, but do not make a more general statement. Students in
this category may change the same aspect of the problem in several
ways, but in their presentation: of their data do not scem to
connect these different changes systematically. They seem to
address each change as a separate instance. For example, students
may replace the midpoint in a construction with subdivision into
four equal parts and then into six equal parts, but seem to consider
each of the statements to be a completely separate idea.

Students in this case change an aspect of the problem systemati-
cally, but do not write a ger.eral conjecture that encompasses all of
the cases. For example, students may systematically replace the
midpoint vith subdivision into 4, 6, and 8 parts. It is a matter of
interpretation to distinguish between a level 2 and a level 3. In
order to be scored as a 3, there must be some evidence, perhaps in
data organization, of a systematic exploration.
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4: Thereisa generalization that describes a general phenomenon,
such as, even numbers..., in any quadrilateral..., and so0 on.

The LEVEL measure is the value assigned to the most general
statement produced by the student on a given problem.

ORIGINALITYis a measure of the connection of the statement to the
problem and to the school’s curriculum. Thus, itisa function of students’
classroom experience with geometry. Statements connected to the problem
and not covered by the school curriculum receive a high score of 4, while
those that are poorly connected to the problem or that are trivial because
they were covered at length in class are rated at a low level of ORIGINALITY.
Once again, since students offered many stateinents, ORIGINALITY is the value
of the most original statement on a given problem.

Corerecr is areflection of the percentage of student statements that
are true for a given problem. Scores range from 0 for all false to 4 for all true,

VERIFYING, CONJECTURING, AND GENERALIZING SKILLS: A CLOSER LOOK

In order toassessan innovation, itisimportant to keep in mind the
goals of the innovation. If one of the goals of the Supposer innovation is to
have students become competent explorers of open-ended inquiry prob-
lems and if that process, by definition, includes having students be nimble
conjecturers, itis important to have a better uniderstanding of the verifying,
conjecturing. and generalizing skills that successful students have. One way
to understand which skills successful students have is to understand the
capabilities of the Supposer and examine the kinds of difficulties some
students have when exploring a problem. Below is a brief discussion of
several kinds of difficulties students have.

The Supposer allows students to create sample geometrical objects
easily and quickly and to generate data about these objects, but it does not
evaluate the types of samples students create to test a hypothesis. Thus,
students using the Supposer are prey to the kinds of sampling biases
described in the literature (Nickerson et al, 1985). For example, the
confirmation biassuggests thatinexperienced students create limited samples,
which only serve to confirm their incorrect or naive generalizations.

The Supposer also does not tell students how to analyze the data
they have collected. For example, the Supposer cannot infer users' inten-
tions and cannot alert users who ignore information provided by the
Supposer that disconfirms their hypotheses. The Supposer cannot know
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when students will reject information because it contradicts a conceptimage
(Vinner and Hershkowitz, 1980) that they have. For example, many novice
inquirersseck control over the type of shape they are working with whenever
the “random” members of the class conflict with their conceptimages. Some
even choose toreconstructawhole construction step by step on a newtriangle
without using the REPEAT option because they refuse to believe the results of

. the option. Only after seeing that they get the same result are they convinced
that the data provided by the “uncontrolled” REPEAT option is correct.

The Supposer also does not teach students to crder their sample
in a particular sequence or add auxiliary lines to their figures. The Supposer
does not suggest which numerical operations students should perform on
their daia and cannot correct mistakes in students numerical manipula-
tions. For example, one student did not find a (correct) pattern which she
had expected because she had unintentionally computed the ratios of two
perimeters in two different ways. The first time her ratio was larger over
smaller and the second time she compared smaller t¢ larger.

Students working with the Supposer need their teachers’ help to
overcome the difficulties described above, yetitis helpful to have a positive
description of the inquiry skills and beliefs that students should develop.
Below, we describe the skills students should develop, not the difficulties
they must overcome. We will integrate the skills that the ETC teachers
thought important with dimensions suggested by research to outline the
considerations that students, using the Supposer toward the goal of making
general conjectures, have to takeintoaccountwhen generating hypotheses,
deciding what data to collect, how to analyze it, and how to further their
investigation.

While for the sake of description itis necessary to divide competent
exploration into coinponent skills, such a description does not capture the
complex interactions betwee: the skills which we are forced to describe
separately.

Generating Hypotheses

Typically, the open-ended inquiry problems we give students to
explore involve a geometrical construction. For example, we might ask
students to connect points that are one third of the way in from each vertex
of a square (Figure 3). (See Schwartz, 1989, for a description of student
exploration of this problem.)

Students must decide what relationships in the construction are
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Figure 3. Subdividing the sides of  worth exploring; they must have some ini-
a square. tial hypotheses to guide their data collec-
A F E p  tion and some notion of which relation-
ships might be of interest. Students should
learn to look for the geometrical relation-
G L ships explored in the curriculum, for ex-
ample, congruence, similarity, parallelism,
types of geometrical figures (squares, right
H K  triangles...). Students must also have strat-
egies for coming up with initial directions
when they are stuck and have no hypoth-
D C eses. Useful strategies include repeating

I ] the construction on other figures to see if
there are visual invariances that strike the eye, systematically varying some
other aspect of the construction in search of interesting changes, and
scanning of the measurement options (area, angle, and length) to collect
data that might stimulate a hypothesis.

Creating Good Samples of Useful Dats

Knowing what and when to measure. Once students have a hypothesis
in mind, they must know how to icst that hypothesis in a single case. They
must use the definitions and theorems studied in class to know which
measurements to make. Competent explorers know how to testa conclusion
with the smallest number of measurements by investigating sufficient condi-
tions. At the same time, a competent explorer also realizes when a particular
mecasurement is unnecessary because it is directly entailed by the construc-
tion. Thus, in Figure 3, if the E is one third of the way from B to A, then AB
= 3*EB by definition, and no measurement is
necessary. . Figurs 4. An

extreme

Considering extreme cases. People of-  ©3%%:
ten fail to generalize appropriately because
they have only sampled stereotypic instances.
Itisimportant thatstudentslearn to try extreme
cases in the set of objects they are conjecturing
about. For example, if a student thinks that for this
cé/nstruction the resulting inner shape is a parallelo-
gram, itisimportant to try an original quadrilateral that
is not a parallelogram, a trapezoid, or a kite (Figure 4).

Collecting the “right” number of examples. “How
should we determine that we have enough instances of a
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generalization?” (Holland et al., 1986, p. 232). This is a difficult question
debated by many who write about induction. Given the dynamics of most
mathematics-classes, it is an especially hard question for students to under-
stand. In most math classes, the amount of work required of the students in
order to complete a certain task is clearly specified. Furthermore, traditional
approaches to geometry do not make use of large quantities of information;
one diagram is often considered sufficient.

We do not suggest a particular numerical answer to this question.
Students should learn to make sure that their sample includes different types
of shapes and covers a range of cases. Students should also learn to ask
themselves if there is something special about the cases in their sample that
might influence their conjecture. Thus, the particular number of examples
examined is a function of students’ knowledge of geometry and ability to
convince themselves that the examples in their sample are indeed represen-
tative examples.

Analyzing the Data

Data display and orgarization. As students collect data, it is impor-
tant that they organize it in a way that allows for easy analysis. Students
should make charts and collect visual data by making good sketches. They
can combine numerical and visual data by marking their measurements
righton their diagrazns. A final useful technique is the ordering of diagrams
into a sequence based on a single characteristic.

Paying attention to negative data. The teacherswe worked with made
sure to remind their students regularly that conjectures are statements that
are true for allmembers in the set of objects described in the given. (In high
school geometry, there are few existential statements.) Students must learn
to appreciate the power of a counterexample.

Manipulating numerical data. Being able to compare numbers is
essential for looking for patterns. Students need to learn to use arithmetic
operations to compare numbers; differences and ratios are especially
important. 't is also valuable to link geometrical objects and relationships
with numerical operations, for example, linking the Pythagorean Theorem
and the existence of a right triangle with squaring and addition. Students
should also remember to look for patterns other than equality.

Manipulating visual information. Students need to learn to look at
a diagram in different ways. For example, in looking at Figure 3, subdividing
thesides ofasquare, studentsshould be able to see itfrom inside outas made
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of four right triangles around a square or from outside in as a large square
with a smaller square inside it. Students should also be willing to add
auxiliary lines to diagrams. Adding auxiliary lines creates new geometrical
objects and sometimes allows new relationships to become evident.

Evalusting Conjoctures

Asstudents develop and testa conjecture, it is also important that
they use what Schoenfeld (1985) calls control. It is important tc make syge
that a resultis not trivial. Is the conjecture something that has aiready been
proven? Is it a direct consequence of something we already know? Once a
conjecture scems supported, it is valuable to use the “what if not” strategy
(Brown and Walter, 1983) to generate other avenues for exploration. Is the
conjecture generalizable?

In geometry there are three aspects of statements that can easily
lead to a generalization. These aspects are type of shape, number, and type
of segment. Thus, when exploring the subdivision of the sides of a square
(Figure 3), it is valuable to think of other quadrilaterals or other types of
polygons. It is worthwhile to explore the numerical aspect of subdivision
into two. Maybe there are interesting results which generalize from two to
three or four. Finally, in conjectures that include median, for example, it is
useful to explore the substitution of angle bisector or altitude for median
(Brown and Walter, 1983).

CLASSROOM ASSESSMENT

There are many different types of assessment that are valuable and
important in a classroom, yet as suggested by the California Assessment
Program (Stenmark, 1989), classroom assessment should be assessment in
the service of learning. In addition to assessment that examines outcomes
and compares students’ achievement, there is also classroom assessment,
which helps teachers make instructional decisions based on examining the
success of a particular instructional sequence in promoting certain student
behaviors. If students do not exhib:t the desired behaviors, then further
instruction is necessary.

Turning now frem research assessment instruments to opportuni-
ties for classroom assessment, we would like to sketch ways to assess the level
of inquiry skills of students working with the Supposer. The first assessment
tool that we will present allows a teacher to elicit some of the verifying, con-
jecturing, and generalizing skillswe described above and to examine whether
any are lacking. Later, missing skills can be discussed or explicitly modeled.
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The instrument we will describe is a paper-and-pencil test that has
five items. It is an ad-ptation of the research instrument described above,
butwith more focused and explicitinstructions. .. :42ad of a scoring scheme
that assigns points for student responses, for each problem we will suggest
a list of skills for which a teacher can check. Since in our approach to
geometry students frequently work in pairs, it also makes sense to consider

giving the test to pairsor as a
take-home, Each papershould
have written comments, but
no numerical score. The most
important information for a
teacher is any pattern of miss-
ing skills and any unusual stu-
dent behavio worth sharing
with the whole class.

Since the literature
on induction (especially Chi
and Bassok, 1989) suggests that
the level of students’ generali-
zation increas-'swhen they pro-
vide arguments for their gen-
eralizations, we suggestthatthe
instructionsask studentsto pro-
vide explanations. However, we
do not suggest that students
write two-column proofs, be-
cause in a limited amount of
time we prefer that students
generateinteresting connected
ideasand argue forthem rather
than spending time writing
detailed proofs. We also fear
that if asked to write proofs
students will not write compli-
cated conjectures that they do
not know how to prove.

Below (and atright)
we will present the five prob-
lems on the test and for each
problem, the important skills
it assesses. This version of the

Test problam 1. Balow are 2 saries of diagrams.
Write 28 many conjectures ss you ¢an that are
relsied to the diagrams given below. For sach
conjecturs indicate which diagrame are relevant
1o the conjecture and sxplain your conjecturss.

\

e

In examining students’ conjectures, look for the
kinds of patterns students see in the visual data;
whether they make conjectures for which
counterexamples are present; whether they add to
their data by making new figures; whether they
add auxiliary lines to the figures; whether they
put the diagrams in a sequence.
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test is designed for students who have finished units on quadrilaterals and
areas of polygons and who have begun to study similarity. Similar questions
can be written for other diagrams and for other statements. In that sense,
thistestis but one example of a general assessment strategy. To create other
tests, one would change the diagrams and statements, but not the instruc-
tions given with each question.

Test problem 2,
ABCDisa
parallelogram.
AC is a diagonal
of ABCD. Eis
the midpoint of
side AB.

In the diagram, length measurements are provided next to each
segment, and area measures are enclosed in a box.

What does this data tell you about this particular figure? Does the
data support the students’statements, or contradict them? Do the students manipulate

the numerical data? Do students discuss patterns of inequality? Do they use both
length and area measures? Are their statements trivial statzments which can be
deduced from the givens presented in the problem?

Based on this one example and your knowledge of geometry, what
general conjectures do you have? Explain your conjectures.

Dostudents exawinedifferent types of polygons ? Do students explore figures
with a different number of sulbdivisions to get point E? Do students examine any
relationships involving angles?

A line which
goes through the center
ofasquare and is parallel
to two of its sides divides
the square into two con-
gruent rectangles. Make
conjectures that are re-
lated to this sentence.
Explainyour conjectures
and their relationship to
the original statement.

Test problem 3. This diagram describes the
following sentence:
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Do students draw auxiliary lines? Do students change the type of polygon?
the type of point? from a siraight line to another type of line? Do they examine a
relationship other than congruence?

Test problem 4. ABC Is an acute triangle. BD and CE ars altitudes
in the triangle. The lengths of ssgmaents ars listed next to each
ssgmant in the diagram. Angle measures ars aiso provided.

Use this data to make conjectures
about therelationships between the triangles 19
in the diagram. Explain your conjectures.

Do students see all of the tri-
angles that are in the diagram? B

For each conjecture
you have made, present the data which supports the conjecture.

Do student data support their conjectures? Are there contradictory data
available that they are ignoring? Are their data sufficient? Do students manipulale
the data to get new data? How do they organize their data?

A Test problem 5. The diagram
below illustrates the
following sentence: I AD is
the angle hisector of BAC,
then the length of the
altitudes in triangle ABD
(ssgment DE) and triangle
ACD (segmant LF) are the
same.

Write a list of related geometrical questions that you would like to
explore and explain the relationship of these questions to the original
sentence. What types of generalizations do students make?

Explain how you would use the Suppos. :to explore each questi
you raised above. Do students describe an appropriate construction? How rm/fly

instances arethey going to examine? What data will they collect ? How well is their data
sample constructed?

Asillustrated by these five test problems, one can gather informa-
tion about students’ performance in atleast the following areas:

A‘n’
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Inductive resoning skills: data collection, sampling appropriate
examples, relating conjectures to supporting data, and organi-
zation of information.

Relalionship to diagrams: willingness to add auxilary lines, organi-
zation of pictures in sequences, and seeing the same diagram in
multiple ways.

Numerical manipulations.

The number of connections that students are able to make between
different topics within the domain of geometry. Students
inclination to look for connections.

Students’ inclination lo use the “what if not” strategy and investigate
related questions.

Knowledge of students’ performance can suggest areas for concentrated
instruction.

Evaluation of Students’ Performance

There are other types of assessment used in schools. Teachers
usually must evaluate their students and give them grades of different kinds.
Below, we presenta scheme for grading students’ lab papers. It is designed
for use in classes where students work in pairs using the Supposer to explore
problems in a lab setting and then write up their explorations individually.
This scheme examines many of the same issues as the test problems above.
It can be used with a wide range of conjecturing problems, though we will
illustrate it for only one: :

The problem: Explore the figure formed by reflecting the inter-
section point of the altitudes in each side of a triangle and connecting the
three image points.

The procedure:
s Construct an acute triangle ABC.
s Draw the three altitudes.

s Label G as their point of intersection.

n
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Reflect point G in each of the three sides of triangle ABC
producing points H, 1, J.

Draw triangles DEF and HIJ.

State your conjectures about the relationships among the
points, elements, and triangles.

s Repeat this procedure for other types of triangles.
Assigning points

Figure 5 shows one schcme for assigning points to students’
wriiten work after they have worked in thelab on this problem. Teachers can
choose to weight the relative value of these categories differently according
to the needs of the class:

Figure 5. A matrix for assigning points.

Plausible, but | Supported with | Supported with
unsupported data arguments
Standard conjectures x1 x2 x3

Special conjectures x4 X5 x6

s Standard conjectures reflect students’ knowledge of similarity.
They include the similarity of DEF and HI]J, the 2:1 ratio of
their sides, the 4:1 ratio of their areas, the parallelism of their
corresponding sides, and the equality of their angles.

Special conjectures might be about any of these: the type of
triangle created for a certain type of starting triangle (for
example, if ABC is equilateral, so is JHI and they are congruent);
formulas for the relationships between the angles of JHI and
DEF; the circle which circumscribes ABC; the altitudes of ABC
(which are the angle bisectors of DEF and, if they are extended,
of JIH);

The reason for the unsupported, yet plausible, category is that
some students may develop new conjectures while working at
home and have no opportunity to collect data. Conjectures
without supporting data should be recognized, but only if they

TS
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are plausible. Otherwise, students might write any geometrical
statements to receive credit.

8 The teachers that we have worked with usually consider neat-
ness and clarity of expression in their students work.

Assigning grades

Once points have been assigned teachers can use a variety of
schemes for assigning grades. Below are two options that do not score on an
absolute scale and that take into account that, with the above scheme for
assigning points, there is no ceiling score. One option is to take the highest
score and declare it to be a perfect paper (100 percent) and then compute
percentages for every other score, This method reacts strongly to outliers.
One student’s score may be much higher than those of the rest of the class.
Another method is to figure out the median score and assign it a median
grade. Higher and lower scores are graded in relation to this median score.

We have found thatitisimportant that teachers using the Supposers
make clear to students that the work with the Supposer is an integral part of
the course. One way to do so is to grade students’ lab papers. Schemes like
the one presented above help students’ understand the types of expecta-
tions that their teachers have for them.

CONCLUSIONS

The goal of our approach to teaching geometry is to have students
become competent explorers of inquiry problems and nimble conjecturers.
Therefore, we are interested in assessing students inquiry skills. As Hawkins
and Sheingold (1986) point out,

While a move from one specific content to another need not alter
measurement, a move toward emphasis on more general thinking
and problem-solving skills or toward more abstract skills within a
domain must change both standardized and less formal measure-
ment techniques. Teachers will néed to devise new ways of knowing
how well their students are doing (p. 54).

Thus, if we reallywant people to try to teach geometryin the way that we have
described, we necd to work on this hard problem. We need to define the
skills that we want to assess and then look at methods for assessing these
skills. Ourwork mustbe practical, that is, useful j classroomsas theyare now
structured. Currently, this means paper-andgencil assessment, yet it is
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extremely difficult to create a pencil-and-paper task that allows the teacher
tofollow the processesused bystudents. Furthermore, traditional assessment’s
approach to peer collaboration complicates our task (see Hawkins and
Sheingold, 1986). Most of the high school teachers we have worked with now
grade for individual achievement. At the same time, when using our
approach to geometry they have students work extensively in pairs.

This paper represents our early efforts at assessing a small range
of higher-order mathematical thinking skills. We focused mainly on conjec-
turing, verifying, and generalizing skills. We described two practical ways to
assess the performance of students who have worked collaboratively. Both
assessment instruments are designed to be administered with paper and
pencil to individual students; one results in individual scores. We hope that
these ideas will be helpful to those teaching other topics; for example, we
believe that much of the analysis in this paper is relevant to suitably posed
algebra problems.

APPENDIX I: DETAILED LIST OF INQUIRY SKILLS

The items in the following lists provide details for the nine
categories shown in Figure 2 in the text. They indicate the kinds of
behaviors, skills, questioning strategies, and beliefs that “good explorers”
exhibit. There are areas where these lists overlap, and no one student will
exhibit all of these strategies when solving a single problem.

These lists were developed by Harvard Educational Technology
Center’s Geometry Labsites group.

Conjecturing

Using knowledge about geometry—Checking the types of relationships
discussed in class.

Looking for patterns other than equality.
Remembering that conjectures are “for all” statements.
Adding to the diagram—drawing auxiliary lines.

Has it been shown before?

Is it a direct consequence of a known relationship?
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Is it generalizable?
Verifylng

Using definitions to (i) know what to measure, (ii) know when measuring is
unnecessary.

Using sufficient conditions as shortcuts.

Understanding the power of counterexamples.

Making one's own charts.

Marking measurements directly on drawings to keep organized data.
General Problem Selving

Getting organized to solve a problem.

Splitting a problem into parts.

Recording data in an organized way in a chart or on a diagram.
Working cooperatively on a problem.

Communicating

Working in pairs cooperatively.

Writing readable reports to summarize lab work.

Writing conjectures (in whatever form desired) that are intelligible to the
reader.

Writing informal and formal proofs.
Proving
When does a statement need proof? -

Isolating the “givens” from a drawing or construction procedure.

Determining the “to prove” from a conjecture.
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Writing informal proofs by using markings on drawings for necessary
conditio: - (givens in one color, derived in another color).

Learning to sequence conjectures 5o that if the first one is proven, it is ther
easy to prove the others.

Checking steps one is unsure of with Supposer measurements to gain
confidence in truth of the step (doesn’t help with reasons).

Drawing auxiliary lines.

Generalizing

Recognizing when a conjecture might be generalizable.

Using three aspects to generalize: (i) number (subdivisions, sides in poly-
gon); (ii) type of line (e.g,, altitude, median to angle bisector); ‘jii) type of
polygon (different types of triangles or quadrilaterals).

Atiitudes about seif

I can create/discover/develop mathematics.

I can participate and talk in discussions of math problems.

Bellefs abeut Inquiry

It’s good to explore on your own outside the bounds of the problem.

A textbook is a valuable tool when exploring.

The final goal of an exploratory problem is to create conjecturesand proofs.
In such a problem, data are not enough, though they are important.

It is good to use deduction to avoid measuring things that you can know
without measuring.

Measuring can’t mathematically prove a “for all ...” statemnent.

A proof proves the statement for all of the drawings that satisfy the
given.

Thoughts about mathematics
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There are differences between definition, postuli..¢, theorem, conjecture,
and observation.

Choice is involved in making definitions and postulates. These choices
determine what are theorems.

A proof proves the statement for all of the drawings that satisfy the given.
All Euclidean geometry has not been created /discovered/developed.
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and Malcolm Swan

iNTRODUCTION

The implementation of higher-order thinking in
the school mathematics curriculum depends on the provision of appropri-
ate assessment material. Teachers’ natural and laudable desire to see
students succeed at public examinations is bound to be reflected in their
teaching. Short, closed, stereotyped examination questions are bound to
encourage imitative rehearsal and practice on similar tasksin the classroom.
(WYTIWYG or “What You Test Is What You Get”). Conversely, a range of
high-quality tasks that assess a broader range of skills will convey messages
about the nature of the desired learning activities more powerfully than any
analytic description. Itis hard for teachers to adopt new teaching practices,
even those that offer innovative learning experiences focused on higher-
level skills, if the teacher cannot see how the skills acquired will be recog-
nized in their students.

What are higher-order skills? First, they are those general strate-
gies and domain-specific tactics that govern the choices of lower-level
technical skills and concepts used in a given activity. They enable a student
todeploymathematical knowledge and techniques effectively. Theyinclude
the ability over a range of domains to generalize, represent, abstract, prove,
check, generate questions, test a hypothesis, or practice a skill. They also
include the ability to formulate a question in mathematical terms, or in
terms appropriate for solving a problem, and to interpret a mathematical
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resultin the context from which the problem originated. And they include
the capacity to be aware of ones’ state of knowledge and skill in a particular
domain, and of ways of acquiring and retaining further knowledge. This is
already an extensive list, which we shall flesh outand illustrate in the course
of the following three chapters.

We cannot discuss innovative material for mathematics and its
assessment without considering other ways in which we wish to improve
currently conventional assessments. These include the following:

s Practical relevance: Too much current material offers a situation
from real life, but then asks questions that have no practical
significance.

The coherence or fragmentation of the task: Many tasks lead students
through a sequence of small, closed steps, entirely removing the
decision load from the student. (“Solve equation A using method
B,” and so on). Few tasks invite students to select from their
repertoire of techniques, carry through a chain of reasoning, or
compare alternative methods—that is, show higher-order skills.

The range of passible responses: To what extent can we set tasks that
offer the opportunity for satisfying work to students of a wide

range of ability and attainment? Traditionally, the level of
response possible has been largely determined by the task
rather than by the student.

The extent and value of the task: Higher-order thinking is generally
displayed more in extended tasks than in short ones. Tasks that
occupy several weeks of school mathematics time are being used
in the United Kingdom to assess such skills, and this has led to
the realization that as more student (and teacher) time is taken
up by assessment, it is important that these activities should
themselves constitute valid and worthwhile learning experiences.

The mode of working on the task: Traditionally, individual students
have worked on written tasks in silence. Such unnatural condi-
tions are imposed for the sake of “reliability,” and this kind of
assessment will probably always be with us. There isa great
nced, however, to explore how we might assess a student’s
ability to work cooperatively, perhaps using oral and practical
forms of communication in a normal working atmosphere.
Again, these aspects are currently being explored in Britain.
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The aspects we seek to measure are key qualities that are sought by
employers and that we need as effective citizens in the modern world. They
represent higher standards than exist in most current assessment.

For the preceding kinds of reasons, we wish to focus not only on
higher-order thinking but, more broadly, on the notion of balanced assess-
ment of all those aspects of mathematical performance that are now widely
recognized and described in documents such as the Mathematical Sciences
Education Board reports (MSEB, 1989, 1990), the National Council of
Teachers of Mathematics Standards (NCTM, 1989), the California Frame-
work (California, 1985) and comparable guidelines in other tasks and
" countries (see, for example, Cockcroft, 1982; DES, 1989; NCC, 1989). Our
key principles will therefore be

= curriculum balance, in which each assessment package consists
of a set of tasks of varying length and style that, taken together,
reflect the curriculum objectives in a balanced way, and

s curriculum validity, in which the assessment tasks themselves
represent learning activities of high educational value so that
the significant amount of time spent on them will represent a
benefit rather than a loss to students’ learning.

Such packages must also satisfy reasonable constraints of reliability and
economy. While the development challenge is substantial, achievements so
far suggest that these objectives can be met.

The preceding approach is in many ways opposite to “the psycho-
metric ideal,” where the assessment package takes very little time, measures
onlya tiny part of the student’s range of performance, yet providesa full and
reliable picture of his or her capabilities. This is not the place for a detailed
critique of that approach; suffice it here to say that such an approzch not
only fails grossly to meetits own targets (correlation cannot carry so greata
burden), butitsends outvery unfortunate signals about the curriculum (see
the excellent analysis in Ridgway, 1988, 1987). As we have indicated above,
most customers of the psychometric approach are convinced thata narrow
focus on the kind of tasks included in such tests is the best route to success
in them, but the backwash effect on the curriculum can be disastrous.
Effective performance in mathematics needs much more than this.

Thus, the kind of assessment proposed here is a prerequisite for
widespread implementation of an effective curriculum. States and school
districts that have appropriate objectives in mathematical education must
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have tests available that inatch those objectives for both formative feedback
and accountability. Such assessments will also give an impetus previously
lacking to developers of textbooks and other materials by stimulating
demand for effective materials that meet the new standards.

It takes time to develop desirable materials. The issue of the
development of effective support for teachers and students in the transi-
tional period needs to be addressed atthe same time, along with other issues
related to the dynamics of curriculum change and the implementation
process. In our chapter, “Moving the System,” we focus on these later issues.
Overall, the work we describe reflectsan established approach in the United
Kingdom and elsewhere, and it draws on a wide range of initiatives and
experience there and in other countries, particularly the Netherlands,
Australia, and parts of the United States. This area of work became a major
part of the Shell Centre activity over a decade ago, when we suggested
(Burkhardt, 1979, 1980) to the largest of the English examination boards
that it should take more seriously the curriculum responsibilities arising
from the influence of its examinations. Thus began a series of collaborative
developments in assessment design and curriculum support that continues
(Shell Centre 1984, 1986, 1987-89, 1989). This anecdote is useful in indicat-
ing the time scale of change achieved so far, which accords well with other
experience, for example, in the Netherlands. These assessment challenges
will not be solved in a year or two, butimmediate progress can be made. So,
it is important to make a start.

DESIGN PRINCIPLES FOR BALANCED ASSESSMENT

The principles that we believe should be applied to the design of
balanced assessment of high curriculum validity, and which we have found
to work well, are really quite simple. Their aim is to encourage the intended
balance of mathematical activity and to observe the students’ performance
in it, assigning creditaccording to value judgments based on the aims of the
curriculum. How is this done?

First, one must decide the range and balance of types of task that
the “target group” of students should be able to do. Brainstorm and search
until a reasonable set of attractive possible tasks are found. Then devise a
form of presentation of each task that leads students to understand what is
required and how to tackle the task. Finally, try it out, observing what
happens, and revise the presentation, repeating this development cycle
until the range of student activity matches that intended (or the task has to
be abandoned). In the light of a sample of student responses (written or
otherwise), devise a grading scheme for assigning credit, then check that
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this works well with those who will be doing the grading—external examin-
ers, teachers, or students. Also, a monitoring or moderation procedure may
need to be developed. Imagination plus realistic empirical development is
the key.

In this process, notice how the nature of tasks is defined first, and
the marking schemes are designed afterwards, to reflect the objectives
sought. The creative talentneeded to design such tasks and marking schemes
must not be underestimated. This may seem obvious, but often, in current
practice, we selectonly tasks thatwe knowwill be easy and cheap tomark using
existing practices. Many of the best tasks have thus been filtered out.

We should like to siress the creative challenge of the whole
process, of the design of beautiful assessment and associated support. So
much that is offered in the mathematics curriculum is mundane. (If the
English language curriculum were like this it would consist entirely of
readings from dictionaries.) This need not be so; mathematics itself is not
like that. It is possible to devise tasks that lift the spirit, that people will talk
aboutafterwards because they are interesting. We think itisworth the effort
to do so.

The Range of Tasks

We shall not review here the target curriculum that authentic
assessment will serve; the descriptions in the documents referred to above
representa broad consensus, mirrored worldwide, as to whatisnow needed.
Let us simply say that we recognize two broad types of task as representing
applied and pure mathematics. The former is a situation or problem arising
outside mathematics—perhaps an optimizing question, such as what is the
best route for a postman’s round in a given district, or perhaps a route is
given and the question is what other routes are possible—where it is
appropriate to construct and manipulate a mathematical model and to
interpret the result in the original situation. The archetypal pure math-
ematical problem is torecognize relationships in a mathematical system and
to attempt to generalize them, altering the constraints and observing the
consequences. Our examplesin this chapter will include both of these broad
types, and we shallinvite appreciation of our examples as displaying the well-
recognized characteristics of authentic mathematical activity. In other
words, we hope readers will study these examples and say, yes, this is an
example of genuine pure or applied mathematical work at a level appropri-
ate to the students to whom it is offered, that is, it displays characteristic
modes of mathematical activity and deploys an appropriate range of math-
ematical concepts and skills.
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According to our approach, there is a belief that assessment
should emphasize positive achievement—measuring what the students can do,
rather than what they cannot (Cockcroft, 1982). This is “inefficient” from a
psychometric point of view but not from a curriculum viewpoint. The
emphasis will be on problems with an “exponential ramp” of challenge, so
that every student who tackles a problem can make productive progress
while even the most able meet real challenges. Most tasks will involve the
students in a broader range of mathematical activities than is common at
preseat—investigating the problem domain, organizing a systematic attack
on it, carrying it through with modifications in the light of experience,
collecting and analyzing data, checking and reporting the results.

Scering and Menitering

The methods for assigning creditto studentresponses are integral
parts of task design and development. General questions as to whataspects
of performance should receive what creditrequire value judgments thatare
central curriculum issues. For example, in tackling a practical problem
using mathematics, should credit be assigned for the overall success in
solving the problem or only for the narrowly mathematical parts of the work?
Methods for grading involve technical issues as well as those of principle—
for example, how far should the grader take a holistic view of the student’s
attempt, and how far should it be analyzed under categories? The usual
range of questions of validity and reliability enter.

The development of grading schemes (or assessmentschedules or
marking schemes or scoring rubrics—the terms proliferate) that enable
teachers as well as outside scorers to measure assessment with adequate
validity and reliability is a central part of the practical design of assessment,
asare mechanisms for monitoring teacher assessmentin a cost-effective ‘vay.
(This process, ifappropriately conceived and implemented, can contribute
to teacher development in an important way.) There is much experi :nce,
worldwide, from which to learn. ‘

Assessinent Packages

Many forms of assessment packages have been tried, and more are
worth investigating. We shall not attempt a comprehensive review; however,
it may be useful to indicate something of the range of produced
possibilities, which go well beyond the short test of multiple-choice items.
Many of the design principles outlined above will be exemplified in
chapters 6 and 7. Now, we turn to our first main theme, the range and
balance of types of task.
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TYPES OF MATHEMATICAL TASK

We aim to discuss this key issue through both exemplification and
analysis. The latter is helpful, but we beg the reader not to take it too
seriously. No classification scheme yet developed is adequate to capture the
nature and variety of mathematical performance, for example; and a lot of
harm has been done in the past through implementing both curricula and
assessments that sought to develop performance in students through teach-
ing the components of doing mathematics but without enough focus on
putting these components all together.

We give much credence to balanced judgment of the face validity of a set of -

tasks as representing the kinds of things we want students to be able to do, and we urge
readers todo so too. Accordingly we shall set outsome examples of types of task
that seem to us to have an essential place in the assessment of mathematics,
emphasizing those thathave been neglected in the past. Todo this properly,
one needs to present the following:

u Several task exemplars. The range of variation within the group of
tasks is very important. If the tasks are very similar, a routine
approach to teaching them, based on explanation and practice
alone, will seem attractive to many teachers. Whereas, if tasks
are more varied, this approach is obviously not enough, and an
investigative learning environment becomes essential.

u Sample student responses. The responses of the students are
central to judging a task; they also provide the platform for
appropriate grading schemes.

» Grading schemes. These procedures describe how credit is
assigned; that is, what aspects of performance are valued with
what weight.

In order to cover the necessary range of tasks here, we shall be able to give
only a partial picture; thatis, we shall present some tasks with no more than
commentary, leaving the reader’simagination to fillin the rest. However, we
have chosen many examples from sources where the rest of the information
is published, so the dedicated reader may find it. Such references are
indicated by asterisks.

Dimensions of Task Description

While we have stressed the importance of viewing tasks holistically,
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we shall begin by writing down some of the dimensions that need to be
covered in assembling a balanced set of tasks. These dimensionsinclude the
following: :

u Task length. Doing and using mathematics involves tackling a
great variety of types of tasks, from the quick mental calculation
to the extended practical problem in which different parts of
mathematics are used from time to time. We think it useful to
distinguish short tasks (from a few seconds to, say, 15 minutes),
long tasks (which may take 15 minutes to 2 hours) and extended
tasks (which take many hours, often spread over several weeks).

Autonomy. While the traditional mathematics curriculum is
largely imitative, with students asked to tackle only tasks that
are very similar to those they have been shown how to do, the
need is for people who can use their skills and understanding
with flexibility and autonomy, since in real life most problems do
not present themselves in neat, standard form.

Unfamiliarily. Some tasks will be entirely familiar and thus
routine, but others need to be less so in order to develop the
students’ abilities to adapt and extend their mathematics.
Nonroutine problem solving is thus closely connected with student
autonomy. It is important to recognize that such problems have
a high strategic load in finding a route through the problem, and
that the technical load must be correspondingly lighter if the
overall difficulty is to be the same. Equally, students can only
use autonomously those skills that they have thoroughly ab-
sorbed and linked to other aspects of their understanding. In
practice we have found there is roughly a four-year gap between
the level of autonomous technical performance of students and
that which they show in imitative exercises of a familiar kind.
This critical factor is often missed.

Practicality. Some tasks will involve the use of mathematics in

practical applications, while others will be purely mathematical.
Each supports the other.

Context. Applications of mathematics cover a very wide range of
practical contexts and assessment tasks should cover some of

that spectrum, particularly those that relate to the experience
and interests of the students.
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w Mathematical content. This hardly needs stressing, but the tasks
should sample the whole range of strategies, concepts and skills
in the target curriculum,

In the rest of this chapter, we exemplify and discuss these characteristics for a
range of shortand long tasks. (Extended tasks are discussed in the nextchapter.)

IMPROVING SHORT TASKS

We start in the most familiar zone, with tasks that (i) take from a
few seconds up to 15 minutes or so, (ii) are focused on particular areas of
mathematical skill and conceptual understanding, and {iii) are meantto be
straightforward. We call these short tasks.

The principal way of testing student performance in the technical
skills of mathematics should be through their ability to recognize the need
for such skills, and their ability to select and deploy them effectively in
worthwhile tusks. However, there remains a need for the external assess-
nient system to embody some curriculum guidance derived from the
collective wisdom of longer and wider experience. For example, although
knowledge of table facts is constantly needed in classroom mathematical
work and in examination tasks, many students still do not possess these facts
at the level of fluency necessary for efficientwork. Itis not only higher-order
skills that need to be encouraged by appropriate inclusion in assessments.
Thus, we see avalue in retaining, atleastfora transitional period, someshort
tasks that test technique directly, giving thema modest total weight (perhaps
20 percent). But even these can be greatly improved, particularly in devel-
oping flexibility and pra-iical relevance beyond the standard types of “fill-
in-the-blank” problems such as

9x5=__,orsimplify x%y<®/x%.

For example, Examples 1 and 2 provide ample practice, and in
Example 2, a little thinking leads to some amusing features accessible *»
children at the same stage (from The Power Series, Shell Centre/UCSMI,
1991). Notice that Example 2 requires a calculator for posing the problem
butnot, for mostchildren, for its solution. Of course, partof the creditin each
case must be given for the mathematical insights, and part for reliable
technical manipulation. Furthermore, these possibilities must be clearly
indicated to the student. Such problems (from Tyler, 1984; Shell, 1984)
furnish particularly good examples of the exponential ramp—everyone can
make quite a lot of progress but few students, or adults, will discover all its
possibilities.

LY
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Example 1. Answer 5.

] 3 3

In box A put any number from 1 to 89
in "ux B put any operation +, - x, or+.
in box C put any number from 110 9

How many difierent ways can you get the resuit 5?
.g

e -] [o]

Example 2. Targel.

-

On a calculator you are only aliowed to use the keys

La] [ 3 [ [

You can press them as often as you like,

You are asked 1o find & saquence of key presses thai produces a given
number in the display. For example, € can be produced by

3x4-3-3a

(@) Finda way of producing each of the numbers from 1to 12. Clear
your calculator before each new sequence.

(b) Find more than one way of producing the number 10. Give reasons
why one way might b preferred to the other.

We have suggested that the degree of practical realism of ques-
tions should be improved. But if thisis done, the reality must clearly be more
than cosmetic. For example, in the question illustrated in Example 3 from
a 1988 GCSE (General Certificate of Secondary Education) examination for
16-year-old students (Shell Centre/SEC, 1989), the ironing board does not
make the question any more real; it is still a formal exercise in trigonometry.
Nonetheless, there is a good real question lurking here, namely, where one
should place the “stops” under the top surface so that the board can be
conveniently used by people of various heights. Of course, like all real
problems, this brings in other factors, but if mathematics is to be any use to
the students, they must be able to integrate it in this way. When looking at
a real question, one should ask “Why?” or “What use is the answer?”

-
. 4
.
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Worse thanin
the preceding case, fe—40cm—+]{
some other questions
require misconceptions 25em
toyielda “rightanswer.” fem fem
For example, consider

the 1988 GCSE question —r
shown in Example 4. NN e 100am 3w N\ O\ N\

Fxzample 4 is meant to The diagram shows the side view of an ironing board.
demand scale-reading The two legs cross at  °and are equal in fength.
and simple extrapola- (a) Use the Information in the diagram to calculate

tion based on a linear angle x °.

odel. In fact, however Give your answer to the nearest degree.
mode?. T, (b) Caloulate the valus of .
the temperature will

pause at 0 C while the

ice melts. Also, freezers should operate below -18 C (0 F) This question
amounts to disinformation. Sensible quesdons can usefully be set in a
practical context that runs over several tasks; for example, the tasks in
Examples 5 and 6 use a series of questions to tackle a coherent theme.

Example 4.

I
Aam of AmM wWMeay
“ (SR W

A freezer Is switched off at 0900 in order to defrost it.
The diagrams show the temperatures in the freezer at
0900 and one hour later at 1000.

(a) What is the temperature in the freezer wheniitis
switched off?

(b) By how much does the temperature rise in the
hour between 0800 and 10007

(c) The temperature rises by the same amount in
the next hour. What is the temperature at 1100?
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Example 5. Before and after birth.

Task B: Growi:..

1. Before and after birth

The table below shows how a typical baby grows during the first months inside its
mother's womb.

Month number 2 3 4 5
Length in centimeters 4 9 16 25

(@) Describe any patterns you can see in the numbers in the table.

I this pattern continues, what length would the baby be at month 82

(b) Luckily for the mother, this pattern doesn't continue!
For months 6 to 9, the approximate langth of the baby is given by the formula

(Length in cm) = 4 x (Month number) + 6
Complete the table, using this formula:

Month number
Length in centimeters

(c) The baby Is born at 9 months.
During the first 6 months after birth, she grows 18 cm.
During the second 6 months, she grows a further 10 cm.

On the next paga, draw a smooth curve to show how the baby grows from 0 months
to 21 months.

This task comes from the Methematics through Problem Solving examination (NEA, 1600°) referred to in chapler 8.
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Exampla 6. College entrance.

Sample open-ended question:s (and response)
from CAP Grade 12 Test, 1987-1989

James knows that half of the students from his school are accepted at the public university nearby.
Also, halt are accepted at the local private college. Jamaes thinks that this adds up to 100 percent

80 he will surely be accapied at one or the other institution. Explain why James may be wrong. ll'.
possible, use a diagram in your explanation.

people accepted by the public university ®
wt people accepted by both
people accepied by the private collage @
eople not accepted ()

© James' xhool‘: occcpuncc

%%%%ﬁ

AS MUCH AS 50%
MIGHT NOT

BE ACCEPTED .& %

Imagine you are talking to a student in your class on the telephone and want the student to draw

some figures. The other student cannot soe the figures. Write a set of directions so that the other
student can draw the figures exactly as shown below.

h Ek 4

John has four place settings of dishes, with each place setting being a plate, a cup, and a saucer.
He has a place setting in each of four colors: green, yellow, blue, and red. John wants to know

the probability of a cup, saicer, and plate being the same color if he chooses the dishes randomly
while setting the table.

Expiain to John how to determine the probability of a cup, saucer, and piate being the same color.
Use a diagram or a chart In your explanaton.

(This isa page from Assessment Alternatives in Mathematics, abooklet from the
California Mathematics Council and EQUALS.)
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These questions are essentially technical tasks in a practical con-
text. They should not be confused with questions that are practical in
purpose, where the emphasis is on understanding a real situation through
the languages of mathematics. For example, Example 7 is a 15-minute task
that has been widely discussed (from Shell 1986). Should we give credit in
mathematics for the quality of the commentary, as a commentary, or even
for an explanation? We should, if learning and performance are to be
advanced. The marking scheme for this question is designed to give credit
for the effective display of some of the following skills: (i)interpreting
mathematical representation using words or pictures, (ii) translating words
or pictures into mathematical representations, (iii) translating between
mathematical representations, (iv) describing functional relationships us-
ing words or pictures, (v) combining information presented in various ways
and drawing inferences where appropriate, (vi) using mathematical repre-
sentations to solve problems arising from realistic situations, and (vii)
describing or explaining the methods used and the results obtained.

Script C and Script E, shown in Example 8, illustrate two student
responses. Table 1 summarizes the features for which credit is given in this
particular problem and the marks awarded to six student responses, includ-
ing the two shown. A more extended discussion is given in the reference,
which also shows how such discussions can be used in a type of in-service
training session for teachers that is both popular and effective. Example 9
came from a student’s own initiative.

Example 7. The hurdies race.

"
400 —

Distance
(meters)

Time (seconds)

The rough sketch graph shown above describes what happens when 3 athletes,
A, B, and C, enter a 400- meter hiirdies race.

Imagine that you are the race commentator. Describe what is happening as
carefully as you can. You do not need to measure anything accurately.
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Table 1. Suggested marking scheme applied to scripts basad on Example 7.

Script

D

At start, C takes lcad

After a while, C stops
1 mark
for ecach Near end, B overtakes A
jof thesz

B Wins

A and B Pass C

C starts running again
2 marks
for 4 of C muns at slower pace
these, or
1 mark for| A slows down or B specds up
2 of thesc

A is sccond or Cis last

Quality of commentary

TOTAL

Example 8. Sample scripts.

Script C (Simon). Hutoles RAcCE
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Script E (Jackda).

Ahlete R on Ba firse (00 m 18 n second place

whenh he hag past the 100~ wmeark the bme 5
abeut 10 SeCemd s H:.r spreéd  stayr ehsut the
same fhravgh the nett (oo m ad o5 ke pestu
2004w  mark the tme 5 sbeuk S0 Stcoend »

He [imishes 4he race in abeut 1 mnute 19 secends

Atklotle B on the first leom 135 slewer on fhe
First 100 m +hon Athlete A hig dme ofter teom
15 absut 20 secends. ;5 specd steys ebeut
e same  threugh e aet (00 end eF he
passes Yhe 2@0m wmavk the time 15 abeut 60
Socemd 5.

e Finshes the race 1a ebeut [mnuke § secends
Se hs quickened wp near the end.

Mifcte C 15 quexer then athlete a, g

M the first 100 at- abeut  the IS0 watre mark
he b add Steps 3".‘\!!”\, but quickens up

sgain e dhe fast 200 m but he finishes

e rece ™ ebeut !mnite 4o secends

Example 9. Fealings.

These graphs show how a girl's feelings varied
during a typical day.

Her timetable for the day was as fobows:

700 am  Woke up

8:00 am

900 am

9:30 am

10:30 am

11:00 am

12:00 pm Went 10 bed

(a) Try 10 explain the shape
duchgrq:h 8 fully a8

(b} How many mesis did she sat?
Which meal was the biggest?
/_\_ﬁ Did she eat at reaktimes?
How long did she spend

oaing unch?

SToeBwNMNwI 248 07 0001 Which lesson did she enjoy
o of oy he most?

When was she “tired and
Erhoustad /\/\/

S 7oz 23460700000 ke thees, and give them 1o
Towe ot iy your neighbor 10 solve.

Fot

- () Skatch graphs % show how

your feskngs change duting
; the day. Ses it your
neighbor can intefpret them
P conmecly.
7001911121 234 5 07 0 pioN?
Tovs ot iy

@ Shall Conine for Matham stical Rducaiien, Univarsity of Nostingham, 1585
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Short Tasks to Test Some General Matkematical Strategies

Some aspects of mathematical strategy lend themselves quite well
to assessment byshort tasks (Bell etal., 1978), and such tasks have been used
extensively in research studies and occasionally in public examinations. We
shall give some items related to proof and to symbolization.

We can distinguish three major dimensions of developmentin the
use of proof strategies. These are (i) the degree of regularity or rationality
expected by the pupil (some are unsurprised by stark inconsistencies); (i)
the explanatory quality of the proof response (an awareness thata proof or
explanation must go beyond the restatement of a result in general terms,
that it must connectitwith existing knowledge and mustavoid circularities);
and (iii) the level of sophistication of the proof techniques or logical
transformations.

The problem “Add and Take” (Example 10) tests the ability to
distinguish two proposed arguments, one the checking of anumber of cases,
the second ageneral argumentapplying to all cases. This item hasbeen used
with various groups of students aged 11 to 15. Vagueness was the keynote of
many answers to this item, such as, “Brenda has explained it better,” or
“Brenda’s reason is based solely on facts.” Some students argued for
whichever of the alternatives they found most simple — a subjective view of
proof. The following are two typical answers, one fair, one poor:

Because Jane has assumed that just because two numbers (1 and 9)
work out as 20, then all other numbers under 10 must work out as

twenty whereas Brenda has given a detailed explanation.

Jane has explained it most easily than Brenda has.

These are typical responses; very few students were sensitive to the invalidity
of assuming what one is trying to prove.

Items that asked students to explain why certain wellknown
principles were true elicited good responses from very few. For example, in
an item called “Adding a Nought,” students were asked whether the prin-
ciple exemplified by 243 x 10 = 430 was true for all whole numbers; they
were asked also to explain or justify their answers. Most simply gave a few
more examples of the use of the principle. Questioning the limits of the
truth of the principle was not on the agenda.

Recognition of circularity of argument in a geometrical proof is
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tested in Example 11. One good answer to the question said, “Step 2iswrong
because if he can safely assume this, there is no need to do the Blroof in the
first place. Step 3 is wrong because everything falls apart at Step 2.”

Example 10. Add and take.

Choose any whole number less than 10
Add the number to 10.

Take the first number from 10.

Add the last two numbers.

Do the same beginning with 9.

i oeoei

000 Bl=EE

Show that the answer is again 20.

JANE says, ‘Begin with 1, answer is 20.
Begin with 9, answer is 20.
So begin with any number
between 1 and 9, answer will be 20.
The answer is always 20",

BRENDA says, 'You have 10+ number.
You add 10- number.
You add and take the same number
50 you will always be left with 2 tens.
The answey is always 20,

Who do you think has given the beiter reason for the answer always
being 207 JANE / BRENDA

Use the space below to explain why. (If you think they are equally
good explain why.)

Example 11. Angles.

Barry wants to prove that any two adjacent angles on a straight line make up 180°.
C

®

PAFullToxt Provided by ERIC




and aims to show that @ +(@ =130,

Barry's proof goes like this.

First he extends CD in a straight line to E to make his diagram look like
this.
Cc

Oy
D
&/

step1 QD =

Step2 D+ = 180° since CE is a straight line.

Step3 Combiningstepsland2 D + (D =180°

Step4 Hence two adjacent angles on a straight lineadd to  180°

For each of steps 1to 4 explain why it is right or wrong.
Step 1is right because they are opposite angles on a straight line

Step 2 is wrong because if he can safely assume this, there is no need
to do the proof in the first place.

Step 3 is wrong because everything falls apart at Stage 2.

Step 4 is wrong because of the reason for Step 3

Sensitivity to definitionsis tested in Example 12, while the items in
Example 13 are intended to test ability to work with symbelic representa-
tions. “Turning the arrows” (Example 13) involves the first familiarization
with the movements P and Q, a half and a quarter turn respectively. Then,
by requesting lengthy combinations of these, the pupil is led to formulate
rules by which such sequences maybe reduced. These rulesare (i) the order
in which the symbols appear is irrelevant, then (ii) P? is an identity
movementand sois Q. This. a typical processin which the thrust towards
generalization leads to the abstraction of relationships. Here, the expres-
sion of the generalizations is also asked for. One might reasonably assume
that some familiarity with the process of interrelating the symbol system and
a geometrical situation, and with the process of reducing words using
algebraic rules, might lead to an improvement in the process.
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Exampie 12. Quadrilaterals.

In this question the meaning of quadrilateral is as given in the following statement.

Definition: A quadrilateral is what you get if you take 4 points A, B, C, D in a plane and join
them with the straight lines AB, BC, CD, DA.

Horace says, "the angles in a quadrilateral at A, B, C, D always add up to 360° .

c Here is my proof.
Every quadrilateral can be made into
2 triangles by jining a diagonal.
Each triangie has 180°and
D 2x180° = 360"."

Warwick says, "Look at my quadrilateral.

50°+70°+60°+ 60° = 240°
My angles make up 240°.
Horace is wrong."

(1) Has Warwick drawn a quadrilateral? Yes/No

(2) Is the first sentence that Horace says correct?  Yes/No
Explain why or why not.

(3) Explain what is right or wrong about Horace's proof.

Example 13. Turning the arrows.

S

Two changes P and Q can be made to this arrow head

P turns it to point in the cpposite direction.
Q turms it through a quarter tum, clockwise.

It alweys starts by pointing north.

1, After dodng FQ (P then Q) which way does it poirt?

2. After dalrg P2 (P tudos) which wmy does it point?
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-

Two changes P and Q can be made to this arrow head

P turns it to point in the opposite direction.
Q turns it through a quarter turn, clockwise.

It always starts by pointing north.

1. After doing PQ (P then Q) which way does it point?

2. After doing P2 (P twice) which way does it point?

“Roofs” (Example 14) is another item where the relationship
between a geometrical figure and a symbolic code is exploited. Here the
question asks what conditions on the numbers constituting the code are
necessary to ensure that a roof can be drawn. The conditionsare A+B=C
and D = B. Students may argue the truth of these either empirically (by
looking at a number of usable codes) or structurally or deductively (by

arguing from the features of the diagram). Thus the different aspects of
proof come into this item too.

Example 14. Roofs.

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 06 0 0 0 0o ROOfSCanbedIawnin

2
°.'.° o 3°.'.°‘ ".'.'.' .' .' .' .' .'. different shapes and sizes,
) ¢ 00 RN EEEEEEEEEE using the dots provided.
° ¢ 0060000060000 s o Ihefirstonedrawn atfar
5 leftisa2352,
EEEEEEE ¢ 0 0 00 000 00 o .
¢ o +—4ho—e 0 o o 0 ¢ +—0f0—¢ o o o 0 0
e 0 e T %o o o .\\ o0 0 %% o 0 fo o o Thesecondisadl41.
© 6 0 06 00060 06000600 00 07 00
® 0 0.0 00006 0060060600000 (The first number tells you
® 6 0 06 000000060 000000 0 ¢ ¢ ¢ howmanyunitstodrawin
© 6 0 06 0 0.0 00600 6000600000690 0 direction 1, the second in
® 0 0 0000000 0600000000000 thedirection2, thethirdin
O 0 6.0 6.0 0606 06 06 06 06 0 0 06 06 06 06 06 0 0 0 direction 3, and the fourth
® 6 00060 0 00 060 00000000000 jndireciond)
© 0 0 0.0 00 0000000000000

® 60 000 00 0000600000000 ¢ ]| Drawa2242andadlsl.
© 0 0.6 0.0 0060600600000 00000

......"'..'.."'..."2Trt0drawa32513nd
O 0 6.0 0.0 0 0 0 0 0 0 0 0 0 0 06 0 0 0 0 0 .y

143 4. Explain what
O 6 0 0 0 0 0 0 0 0 0 06 06 0 0 0 00 e 0 0o ha ns.
O 6 06 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 ppe )
® 0 0 0 0 0 0 0 0 0 0 0 06 0 0 0 00 0 0 0 0
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A number of the above items were developed as part of a project
to evaluate achievements in process aspects of mathematics in a curriculum
for 11- to 13-year-olds in which problem investigation was the main way of
developing knowledge of the syllabus content (Bell, Rooke, and Wigley,
1978, 1979). Subsequently, some interview-type assessinents were devel-
oped, complete with scripts specifying prompts and hints to be offered if
needed (Fowler, 1983). Such questions were used by the Freudenthal
Institute Assessment of Performance Unit in its national surveys, 1978-82.
Some twenty teachers were recruited and trained, and spent two weeks
interviewing, in different schools, about six students per day, each for 45
minutes, covering three topics. The valuable experience gained of the
feasibility and consistency (high) of their procedure isreported by Foxman
et al. (1989).

NONROUTINE PROBLEM-SOLVING TASKS

The development of mathematical performance demands flexibil-
ity and adaptability, as well as reliable technical performance and the ability
to communicate what has been tried, and whatfound. While the tasks set out
so far have demanded some flexibility, they have been essentially straightfor-
ward, with a fairly obvious approach to finding what s asked. We now want to
discuss tasks where the strategic demand—finding a successful approach to
and route through the problem—is a major aspect of the task. Again, we
emphasize the importance of keeping the total cognitive load in line with the
student’s abilities, and the “four-year gap” (between autonomous and imita-
tive performance) that this seems to imply for the technical level.

We consider first a mode of assessment in which the attempt is
made to test the various components of the generalization process through
a shortinvestigation in a traditional examination setting. One early develop-
mentwasa joint project between one of the major British examining boards,
the Northern Universities Joint Matriculation Board (JMB) and the Shell
Centre (Burkhardt, 1980). Eachyear one new type of question was included
in the JMB examination for abler 16-year-olds (the GCE O-level). The Shell
Centre provided the questions and (equally or more important) a substan-
tial module of teaching material with guidance for teachers to support
preparation of students for this question (Shell Centre, 1984). The teaching
materials, designed to cover three or four weeks of mathematics time, are
based around well established problem-solving strategies. They offer sub-
stantial initial support for students (and for the teacher), with decreasing
support as experience develops. The set of strategies (cf. Polya, 1945) used
was (i) try some simple cases, (ii) find a helpful diagram, (iii) organize
systematically, (iv) make 2 table, (v) spot patterns, (vi) find a general rule,

o
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(vii) explain why itworks, (viii) check regularly. The questions were in the
form of longer (20-25 minute) problems requiring an investigative ap-
proach. The grading schemes were based loosely on the preceding strate-
gies, giving credit for (i) understanding the problem, (ii) organizing an
attack, (iii) carrying it through successfully, and (iv) explaining or justifying
the solution.

In Exampie 15 (from Shell Centre, Example 15. Skelelon tower.
1984), students, who have not seen this par-
ticular problem before, take a variety of ap-
proaches. Some break the “tower” into four
legs and a center, some take horizontal slices,
finding number patterns and generalizing
them into verbal rules with more or less suc-
cess. Few, in fact, express their verbal rule in
algebra, or sum their arithmetic progression,
even though they are able todo so if these are
presented as separate technical tasks. This is
an illustration of the four-year gap between
autonomous and imitative performance that
we have already noted—the technical level of :
this question, apart from the last part, is at How many cubes are needed
elementary school level, but the whole task is to build this tower?
a suitable challenge for able students at age b, Howmany cubesareneeded
16. It was also interesting to note how few to build a tower like this, but
students (less than 5 percent) take a geomet- 12 cubes high?
ricapproach, breaking offtwo opposite “legs”  ¢. Explainhow you worked out

and putting them upside down on the others your answer to part (b).
to form a rectangle. d. How would you calculate the
number of cubes needed for

?
Example 16, “Stepping Stones” is & tower n cubes high?

another question that tests ability to general- .

ize. The elements of the solution to this question consist of (i) explaining
how the girl will stop only on even-numbered stones, (ii) identifying values
of n that entail stepping eventually on every stone, that is, those divisible
neither by 2nor 7, (iii) generalizing this to numbers that have no divisors in
common with the number of stones in the ring—with explanation, Thus, the
first partinvolves trying a given simple case, displaying understanding of the
problem; the second requires some systematic organization of trials of other
numbers to cover all significant cases, and the third involves making, stating,
and explaining a generalization, (In many such questions, a little algebra is
appropriate at thisfinal stage, though surprisingly few students can translate
the rules they have found verbally into algebra (Shell Centre, 1986).
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Example 16. Stepping stones.

A ring of ‘'stepping stones’ has 14 stones in it, as shown in the diagram.

A girl hops round the ring, stopping to change faet every time she has made 3 hops. She
notices that when she has been round the ring three times, she has stopped to change feet
on each one of the 14 siones.

O O O &. The girl now hops round the ring, stopping to
change feet every time she has made 4 hops.
Explain why in this case she will not stop on

OO each one of the 14 stones no matter how
O
O

long she continues hopping round the ring.

b. The gir stops to change feet evary time she
has madenhops. For which values of nwill
she stop on each one of the 14 stonaes to
change feet?

O
O
O
O
O ‘ O . Find a general rule for the values ofn when
the ring contains more (or less) than 14
start

stones.

Such questions have some but not all of the characteristics of a
mathematical investigation—generalizing from examples, and stating and
explaining the generalization are required, but with little formulation or
extension of questions and little choice of where next to go in the inquiry.
The steps to follow are prescribed. We may regard these as relatively closed
investigations testing a fairlywell defined set of strategies. Of course, thisstill
represents a substantial extension of the range of attainments normally
sampled in written examinations. Since the design and use of marking
schemes for such questions presents different demands from the more
traditional questions, the module of support material contains examples of
a number of such questions with mark schemes and students’ scripts (Shell
Centre, 1984) as well as the classroom materials and some other in-service
support for teachers new to this kind of work.

In the next chapter, on extended tasks, we shall consider how
assessment can be made of those further higher-order skills and strategies
that are brought into play in extended pieces of work, particularly those in
which the openness of the situation leads to responses differing widely in
contentand style. Such assessmentis often nonspecific in some respects,and
some approaches entail an extensive moderation system, which we shall also
discuss.
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6 Assessment of
Extended Tasks

Alan Bell, Hugh Burkhardi,
and Malcolm Swan

INTRODUCTION

In this chapter, we discuss the assessment of ex-
tended tasks, by which we mean mathematical activities covering many
hours, usually spread over several weeks. Typically, this may range from
three to fifteen hours of class time, often with additional private study
outside. This type of task and its assessment has become a major focus of
attention in England over the past few years. Such work originated from the
desire of some teachers to increase the level of positive involvement on the
part of their students in mathematical activity. Discussion led by the teacher
was aimed at enabling the student to get started on the investigation of a
problem that students had, as far as possible, formulated for themselves and
adopted as their own. Ideally, each student would be exploring a different
problem, although in practice, several might have arisen from a discussion
of the same basic situation. Two examples of work initiated in this way are
given in the early part of this chapter. Originally, most such investigations
were located in pure mathematics rather than in applications, butin current
examination schemes, it is normal to require candidates to submit work
from several different fields. For example, one typical scheme (Shell
Centre/MEG, 1989) requireswork from practical geometry, statistics, every-
day applications of number, and pure matheratical investigation. Since the
tasks are not specified, such work cannot be assessed by a content-specific
scoring scheme. Profile assessments are required, involving global evalua-
tion of the work under a number of headings. These will be discussed below.
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In Britain, all General Certificate of Secondary Education (GCSE)
examinations (for age 16) mustinclude the assessment of extended tasks of
the preceding kind, but the schemes of the different examining groups
differ considerably in the amount of freedom allowed. For some teachers
this provision is the culmination of a long campaign to have students’
individual, autonomously chosen work recognized in the examination
system. For the majority, it is a new, substantial, and probably not entirely
welcome demand. To satisfy the need for support for innovations in
assessment, a number of publications have emerged recently. These offer
possible “starters” for investigations and, at best, some careful general
guidance abouthow toinitiate investigation of a suitable field of activity and
to lead students to identify a particular problem of their own to pursue.
Some extracts from our own publication, Extended Tasks for GCSE Mathemat-
ics (Shell/MEG, 1989) developed with one examining board, will be given
below. This forms the second section of this chapter.

Another way in which extended tasks may arise isin the course of
work on a substantial class practical activity as, for example, in our Numeracy
through Problem Solvingmodules (Shell Centre /JMB, 1987-1989).In the third
nd longest part of this chapter, we shall describe the approachesillustrated,
in particular, from “Plan a Trip,” “Be a Paper Engineer,” and “Be a Shrewd
Chooser.” (Other modules are “Design a Board Game”and “Produce a Quiz

Show.”) The pattern of classroom activity prescribed provides additional
support to teachers, but there is a wide scope for individuality of response in
the actual games designed, objects made, or products assessed, and in the
design methods adopted. The assessments for these modules are weil de-
fined, covering a variety of modes; they take place in the course of the work
on the module, and afterwards, in a manner which will be described below.

Twe Examples of Opea Assignments

These examples (one of an “applied” problem explored by a 17-
year-old boy, the other ofa “pure” problem investigated bya 13-year-old girl)
have been chosen because they show quite well the strategic choices being
made by the student—about what questions to ask, what nextsteps to take—
and the explanation of the course of the investigation to a reader. The
authenticity and autonomy of the work shine through.

In “Filter Paper” (Exampie 1), a 17-year-old boy investigates a
question concerning the standard way of folding filter papers in the
chemistry laboratory. He asks whether a cone containing greater volume
could be obtained from a different method of folding. He concludes that 80
percent more volume could be obtained, and he offers a brief suggestion
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about why this is not used in practice. The crux of the task is the modeling
stage—the identification of the relations among the vertical height, slant
height, and base radius of the possible cones as determined by the possible
folding, and the choice of a suitable independent variable (A to B in the
script). Following this, there is a consideration of the shape of the resulting
graph (B to C), and the application of the standard method of finding a
maximum point by differentiation (C to D). Dealing with the algebra
involving several quantities is a significant task which is handled well. The
last main section (D to E) considers the normal method of folding and
calculates the volume given for a paper of radius 1. Finally there is the
summary of results (E to F; for further discussion, see Association of
Teachers of Mathematics, 1978%).

Example 1. Filter paper.

What is the cone of greatest volume that can
be made from a piece of filter paper of any
given radius? L

A

"A plece of filter paper is a perfect circle, of
radius, let us say, L

Now by Pythagoras, who stated that in a
right angled triangle (as in the case above)
the square of the hypoteruse was equal to

the sum of the squares on the other two
FILTER sides:

PAPER
2= h? + 3

whence 12 = L2-h2

and 2 L2- 12

t this piece of filter paper is folded into a cone,

L becomes the slant height of the cone and the
centre of the circle becomes the apex of the
cone.

The cones which can be made from that sheet
of fiter paper can vary a lot in dimension, but
the slant height will always be constant and
equal to the radius of the paper.

For a typical cone,
h = perpendicular height

r = radius of base cone
L = glant height

ERIC
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The formula for the volume of a cone = %ﬂah

where r = radius of base of cone
h = perpendicular height of cone

r and h are variables in the equation, but for a
constant slant helght, r may be expressed in
terms of h and vice versa so that we may
substitute in volume = %ﬂzh and hence end
up with one variable.

Thus substituting r2 = L2 - h2 in Vol = %,“2,,

WO GOt A (L2 - W2) N oo X
3
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; =Eh12.Ep3
i.e.volV 3hL 3
B

it a graph ot V-gh Lz-ghswedrawn.l.e.a

graph showing how volume varies with the
perpendicular height of the cone, (L aiways
remaing constant for that plece of fiter paper) a
cubic would be obtained since there is a
term in h3 present in the equation. This graph
wili be of the form

y=ax3+ bx2+cx +d

we have V = - gh“ + :;-Lzh
ie. y=ax®+cx

Where the graph V = gh:’ + %Lzh crosses the x
axis

. L4 %2
V-0 .leningaua.and 'SL =b

dividing by h we obtain
0= ah?+b
s b =-ah?

b
2"
multplying both sides by - we obtain

b
a=t

* b
h"’-‘\';

which means the h has reai roots.
Alsohv--:—;h“ + §L2h.whenh-o.v-o
= h has tivee real roots, 0 being the third

Onthlsgraphotv--;—;hg

LI
+ §L h
There are thus ¢ tuming points on the graph,
hence a maximum and a minimum point.

C
Where there is a maxirnum point, here the V
co-ordinate is the maximum volume attainable
from the fiker paper and the h co-ordinate
the corresponding height of that cone

-, ditterertiate V = ZEh L2 - Z 13 with respect
3 3

to h remembering that L is a constam for
that piece of paper.

remembering that | is a constant for that piece of

dv_x . 3xh
paper, o= 3l? - 73

=Eq2.
3 (L?-3m)

Thus there are tuming points when
3(2-3n% =0

multiplying both sides by % we obtain

L2-3n2=0
- 12=3n2

to findt out whether A Is a maximum point or
d2vz o moo  K
not we find otaLh-§h3

d2h?

dv

= X2 . xh2
ah 3L xh

LV :/L_z
“gh2 =-2ghwhon h = 3

2
thus = -21!;.%

since ng\zl is a negative guaniity,

+
2
whenh = ‘\’ L? the:e is the maximum point
hence the maximum volume

’ 2
to check, substitute h for %

. v L2
- an2 = -2xh -2xh -

3
’ 2
+ 2xh %

2
s~ whenh= - '—'3— fhere is the maximum volume,

obtained from the cone of this height




D

Now compare the voluma of the cone formed
by fokding Iaboratory filter paper in the normal
way, 1o the volume of the cone that could be

made by folding it In such a way that the

2
height ot the cone was '\’ % , where L
equals the radius of the fitter paper.

in the laboratory, the filter paper is taken and
folded in hak, it is then folded in half again so
that a quarter segment of a circle is produced.
If this radius of the filter paper is L, as we have
supposed all along, the circumierence = 2xL

-~ the length of the quarter segment of the
orce =32l - A

2
@

7

@4—//1

Along (a), (b Jthere are 4 folds of paper, and
when the cone is produce from this paper, 3

folds are made to form one side, the 4th fold,
the other thus:

m,/'@ L
3 i
@c/

This is bottom view of the cone, i.e.
from the other diagram looking down
on the lings along (a) (b) and
separating 3 lines (folds of paper) to
the right as in the diagram, and 1 to the
left.

Jroos

Thus the perimeter of this circle at the base of
the cone

R N1
2 2 2
=aL

Let the radius of the base of the cone = r
circumference of this circle = 2nr
but the circumierence also = xl.
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Now it the radius of the base of the cone =

E,